News Archive
  • December 2024
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023

VIZTA Project Time-of-Flight Camera Datasets Released

As part of the research activities of DFKI Augmented Vision in the VIZTA project (https://www.vizta-ecsel.eu/), two publicly available datasets have been released and are available for download. TIMo dataset is a building indoor monitoring dataset for person detection, person counting, and anomaly detection. TICaM dataset is an automotive in-cabin monitoring dataset with a wide field of view for person detection and segmentation and activity recognition. Real and synthetic images are provided allowing for benchmarking of transfer learning algorithms as well. Both datasets are available here https://vizta-tof.kl.dfki.de/. The publication describing the datasets in detail are available as preprints.

TICaM: https://arxiv.org/pdf/2103.11719.pdf

TIMo: https://arxiv.org/pdf/2108.12196.pdf

Video: https://www.youtube.com/watch?v=xWCor9obttA

Contacts: Dr. Jason Rambach, Dr. Bruno Mirbach

XR for nature and environment survey

On July 29th, 2021, Dr. Jason Rambach presented the survey paper “A Survey on Applications of Augmented, Mixed and Virtual Reality for Nature and Environment” at the 23rd Human Computer Interaction Conference HCI International. The article is the result of a collaboration between DFKI, the Worms University of Applied Sciences and the University of Kaiserslautern.

Abstract: Augmented, virtual and mixed reality (AR/VR/MR) are technologies of great potential due to the engaging and enriching experiences they are capable of providing. However, the possibilities that AR/VR/MR offer in the area of environmental applications are not yet widely explored. In this paper, we present the outcome of a survey meant to discover and classify existing AR/VR/MR applications that can benefit the environment or increase awareness on environmental issues. We performed an exhaustive search over several online publication access platforms and past proceedings of major conferences in the fields of AR/VR/MR. Identified relevant papers were filtered based on novelty, technical soundness, impact and topic relevance, and classified into different categories. Referring to the selected papers, we discuss how the applications of each category are contributing to environmental protection and awareness. We further analyze these approaches as well as possible future directions in the scope of existing and upcoming AR/VR/MR enabling technologies.

Authors: Jason Rambach, Gergana Lilligreen, Alexander Schäfer, Ramya Bankanal, Alexander Wiebel, Didier Stricker

Paper: https://av.dfki.de/publications/a-survey-on-applications-of-augmented-mixed-and-virtual-reality-for-nature-and-environment/

Contact: Jason.Rambach@dfki.de

VIZTA Project 24M Review and public summary

DFKI participates in the VIZTA project, coordinated by ST Micrelectronics, aiming  at developing innovative technologies in the field of optical sensors and laser sources for short to long-range 3D-imaging and to demonstrate their value in several key applications including automotive, security, smart buildings, mobile robotics for smart cities, and industry 4.0. The 24-month review by the EU-commission was completed and a public summary of the project was released, including updates from DFKI Augmented Vision on time-of-flight camera dataset recording and deep learning algorithm development for car in-cabin monitoring and smart building person counting and anomaly detection applications.

Please click here to check out the complete summary: https://www.vizta-ecsel.eu/newsletter-april-2021/

Contact: Dr. Jason Rambach, Dr. Bruno Mirbach

Paper accepted at ICIP 2021

We are happy to announce that our paper “SEMANTIC SEGMENTATION IN DEPTH DATA : A COMPARATIVE EVALUATION OF IMAGE AND POINT CLOUD BASED METHODS” has been accepted for publication at the ICIP 2021 IEEE International Conference on Image Processing which will take place from September 19th to 22nd, 2021 at Anchorage, Alaska, USA.

Abstract: The problem of semantic segmentation from depth images can be addressed by segmenting directly in the image domain or at 3D point cloud level. In this paper, we attempt for the first time to provide a study and experimental comparison of the two approaches. Through experiments on three datasets, namely SUN RGB-D, NYUdV2 and TICaM, we extensively compare various semantic segmentation algorithms, the input to which includes images and point clouds derived from them. Based on this, we offer analysis of the performance and computational cost of these algorithms that can provide guidelines on when each method should be preferred.

Authors: Jigyasa Katrolia, Lars Krämer, Jason Rambach, Bruno Mirbach, Didier Stricker

Paper: https://av.dfki.de/publications/semantic-segmentation-in-depth-data-a-comparative-evaluation-ofimage-and-point-cloud-based-methods/

Contact: Jigyasa_Singh.Katrolia@dfki.de, Jason.Rambach@dfki.de

TiCAM Dataset for in-Cabin Monitoring released

As part of the research activities of DFKI Augmented Vision in the VIZTA project (https://www.vizta-ecsel.eu/), we have published the open-source dataset for automotive in-cabin monitoring with a wide-angle time-of-flight depth sensor. The TiCAM dataset represents a variety of in-car person behavior scenarios and is annotated with 2D/3D bounding boxes, segmentation masks and person activity labels. The dataset is available here https://vizta-tof.kl.dfki.de/. The publication describing the dataset in detail is available as a preprint here: https://arxiv.org/pdf/2103.11719.pdf

Contacts: Jason Rambach, Jigyasa Katrolia

Paper accepted at ICRA 2021

We are delighted to announce that our paper PlaneSegNet: Fast and Robust Plane Estimation Using a Single-stage Instance Segmentation CNN has been accepted for publication at the ICRA 2021 IEEE International Conference on Robotics and Automation which will take place from May 30 to June 5, 2021 at Xi’an, China.

Abstract: Instance segmentation of planar regions in indoor scenes benefits  visual  SLAM  and  other  applications  such  as augmented reality (AR) where scene understanding is required. Existing  methods  built  upon  two-stage  frameworks  show  satisfactory  accuracy  but  are  limited  by  low  frame  rates.  In this  work,  we  propose  a  real-time  deep  neural  architecture that  estimates  piece-wise  planar  regions  from  a  single  RGB image. Our model employs a variant of a fast single-stage CNN architecture to segment plane instances.  Considering  the  particularity of the target detected, we propose Fast Feature Non-maximum  Suppression  (FF-NMS)  to  reduce  the  suppression errors  resulted  from  overlapping  bounding  boxes  of  planes. We  also  utilize  a  Residual  Feature  Augmentation  module  in the  Feature  Pyramid  Network  (FPN)  .  Our  method  achieves significantly  higher  frame-rates  and  comparable  segmentation accuracy  against  two-stage  methods.  We automatically label over 70,000 images as ground truth from the Stanford 2D-3D-Semantics dataset. Moreover, we incorporate our method with a state-of-the-art planar SLAM and validate  its  benefits.

Authors: Yaxu Xie, Jason Raphael Rambach, Fangwen Shu, Didier Stricker

Paper: https://av.dfki.de/publications/planesegnet-fast-and-robust-plane-estimation-using-a-single-stage-instance-segmentation-cnn/

Contact: Yaxu.Xie@dfki.de, Jason.Rambach@dfki.de

Presentation on Machine Learning and Computer Vision by Dr. Jason Rambach

On March 4th, 2021, Dr. Jason Rambach gave a talk on Machine Learning and Computer Vision at the GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit) workshop on Machine Learning and Computer Vision for Earth Observation organized by the DFKI MLT department. In the talk, the foundations of Computer Vision, Machine Learning and Deep Learning as well as current Research and Implementation challenges were presented.

Presentation by our senior researcher Dr. Jason Rambach
Agenda of the GIZ workshop on Machine Learning and Computer Vision for Earth Observation

VIZTA project: 18-month public project summary released

DFKI participates in the VIZTA project, coordinated by ST Micrelectronics, aiming  at developing innovative technologies in the field of optical sensors and laser sources for short to long-range 3D-imaging and to demonstrate their value in several key applications including automotive, security, smart buildings, mobile robotics for smart cities, and industry4.0. The 18-month public summary of the project was released, including updates from DFKI Augmented Vision on time-of-flight camera dataset recording and deep learning algorithm development for car in-cabin monitoring and smart building person counting and anomaly detection applications.

Please click here to check out the complete summary.

3 Papers accepted at VISAPP 2021

We are excited to announce that the Augmented Vision group will present 3 papers in the upcoming VISAPP 2021 Conference, February 8th-10th, 2021:

The International Conference on Computer Vision Theory and Applications (VISAPP) is part of VISIGRAPP, the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. VISAPP aims at becoming a major point of contact between researchers, engineers and practitioners on the area of computer vision application systems. Homepage: http://www.visapp.visigrapp.org/

The 3 accepted papers are:

1.  An Adversarial Training based Framework for Depth Domain Adaptation
Jigyasa Singh Katrolia, Lars Krämer, Jason Raphael Rambach, Bruno Mirbach, Didier Stricker
One sentence summary: The paper presents a GAN-based method for domain adaptation between depth images.

2. OFFSED: Off-Road Semantic Segmentation Dataset
Peter Neigel, Jason Raphael Rambach, Didier Stricker
One sentence summary: A dataset for semantic segmentation in off-road scenes for automotive applications is made publically available.

3. SALT: A Semi-automatic Labeling Tool for RGB-D Video Sequences
Dennis Stumpf, Stephan Krauß, Gerd Reis, Oliver Wasenmüller, Didier Stricker
One sentence summary: SALT proposes a simple and effective tool to facilitate the annotation process for segmentation and detection ground truth data in RGB-D video sequences.

Article at MDPI Sensors journal

We are happy to announce that our paper “SynPo-Net–Accurate and Fast CNN-Based 6DoF Object Pose Estimation Using Synthetic Training” has been accepted for publication at the MDPI Sensors journal, Special Issue Object Tracking and Motion Analysis. Sensors (ISSN 1424-8220; CODEN: SENSC9) is the leading international peer-reviewed open access journal on the science and technology of sensors.

Abstract: Estimation and tracking of 6DoF poses of objects in images is a challenging problem of great importance for robotic interaction and augmented reality. Recent approaches applying deep neural networks for pose estimation have shown encouraging results. However, most of them rely on training with real images of objects with severe limitations concerning ground truth pose acquisition, full coverage of possible poses, and training dataset scaling and generalization capability. This paper presents a novel approach using a Convolutional Neural Network (CNN) trained exclusively on single-channel Synthetic images of objects to regress 6DoF object Poses directly (SynPo-Net). The proposed SynPo-Net is a network architecture specifically designed for pose regression and a proposed domain adaptation scheme transforming real and synthetic images into an intermediate domain that is better fit for establishing correspondences. The extensive evaluation shows that our approach significantly outperforms the state-of-the-art using synthetic training in terms of both accuracy and speed. Our system can be used to estimate the 6DoF pose from a single frame, or be integrated into a tracking system to provide the initial pose.

Authors: Yongzhi Su, Jason Raphael Rambach, Alain Pagani, Didier Stricker

Article: https://av.dfki.de/publications/synpo-net-accurate-and-fast-cnn-based-6dof-object-pose-estimation-using-synthetic-training/

Contact: Yongzhi.Su@dfki.de, Jason.Rambach@dfki.de