News Archive
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023

VIZTA Project successfully concluded after 42 months

The Augmented Vision department of DFKI participated in the VIZTA project, coordinated by ST Microelectronics, aiming at developing innovative technologies in the field of optical sensors and laser sources for short to long-range 3D-imaging and to demonstrate their value in several key applications including automotive, security, smart buildings, mobile robotics for smart cities, and industry4.0.

The final project review was successfully completed in Grenoble, France on November 17th-18th, 2022. The schedule included presentations on the achievements of all partners as well as live demonstrators of the developed technologies. DFKI presented their smart building person detection demonstrator based on a top-down view from a Time-of-flight (ToF) camera, developed in cooperation with the project partner IEE. A second demonstrator, showing an in-cabin monitoring system based on a wide-field-of-view, which is installed in DFKIs lab has been presented in a video.

During VIZTA, several key results were obtained at DFKI on the topics of in-car and smart building monitoring including:

Figure 1: In-car person and object detection (left), and top-down person detection and tracking for smart building applications (right).

https://www.linkedin.com/company/vizta-ecsel-project/

Contact: Dr. Jason Rambach, Dr. Bruno Mirbach

DFKI Augmented Vision Researchers win two awards in Object Pose Estimation challenge (BOP Challenge, ECCV 2022)

DFKI Augmented Vision researchers Yongzhi Su, Praveen Nathan and Jason Rambach received their 1st place award in the prestigious BOP Challenge 2022 in the categories Overall Best Segmentation Method and The Best BlenderProc-Trained Segmentation Method.

The BOP benchmark and challenge addresses the problem of 6-degree-of-freedom object pose estimation, which is of great importance for many applications such as robot grasping or augmented reality. This year, the BOP challenge was held within the “Recovering 6D Object Pose” Workshop at the European Conference on Computer Vision (ECCV) in Tel Aviv, Israel https://eccv2022.ecva.net/ . A total award of $4000 was distributed among the winning teams of the BOP challenge, donated by Meta Reality Labs and Niantic.

The awards were received by Dr. Jason Rambach on behalf of the DFKI Team and a short presentation of the method followed. The winning method was based on the CVPR 2022 paper “ZebraPose”  

ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation
Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Raphael Rambach, Nassir Navab, Benjamin Busam, Didier Stricker, Federico Tombari

The winning approach was develop by a team led by DFKI AV, with contributing researchers from TU Munich and Zhejiang University.

Contact: Yongzhi Su, Dr. Jason Rambach

Dr. Jason Rambach with the award
Kick-Off for EU Project “HumanTech”

Our Augmented Vision department is the coordinator of the new large European project “HumanTech”. The Kick-Off meeting was held on July 20th, 2022, at DFKI in Kaiserslautern. Please read the whole article here: Artificial intelligence for a safe and sustainable construction industry (dfki.de)

ARTIFICIAL INTELLIGENCE FOR A SAFE AND SUSTAINABLE CONSTRUCTION INDUSTRY

Please check out the article “Artificial intelligence for a safe and sustainable construction industry (dfki.de)” concerning the new EU project HumanTech which is coordinated by Dr. Jason Rambach, head of the Spatial Sensing and Machine Perception team (Augmented Reality/Augmented Vision department, Prof. Didier Stricker) at the German Research Center for Artificial Intelligence (DFKI) in Kaiserslautern.

Augmented Vision @CVPR 2022

DFKI Augmented Vision had a strong presence in the recent CVPR 2022 Conference held on June 19th-23rd, 2022, in New Orleans, USA. The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) is the premier annual computer vision event internationally. Homepage: https://cvpr2022.thecvf.com/ .

Overall, three publications were presented:

1. ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation
Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Raphael Rambach, Nassir Navab, Benjamin Busam, Didier Stricker, Federico Tombari

https://openaccess.thecvf.com/content/CVPR2022/papers/Su_ZebraPose_Coarse_To_Fine_Surface_Encoding_for_6DoF_Object_Pose_CVPR_2022_paper.pdf

2. SOMSI: Spherical Novel View Synthesis with Soft Occlusion Multi-Sphere Images Tewodros A Habtegebrial, Christiano Gava, Marcel Rogge, Didier Stricker, Varun Jampani

https://openaccess.thecvf.com/content/CVPR2022/papers/Habtegebrial_SOMSI_Spherical_Novel_View_Synthesis_With_Soft_Occlusion_Multi-Sphere_Images_CVPR_2022_paper.pdf

3. Unsupervised Anomaly Detection from Time-of-Flight Depth Images
Pascal Schneider, Jason Rambach, Bruno Mirbach , Didier Stricker

https://openaccess.thecvf.com/content/CVPR2022W/PBVS/papers/Schneider_Unsupervised_Anomaly_Detection_From_Time-of-Flight_Depth_Images_CVPRW_2022_paper.pdf

Keynote Presentation by Dr. Jason Rambach in Computer Vision session of the Franco-German Research and Innovation Network event

On June 14th, 2022, Dr. Jason Rambach gave a keynote talk in the Computer Vision session of the  Franco-German Research and Innovation Network event held at the Inria headquarters in Versailles, Paris, France. In the talk, an overview of the current activities of the Spatial Sensing and Machine Perception team at DFKI Augmented Vision was presented.

CVPR 2022: Two papers accepted

We are happy to announce that the Augmented Vision group will present two papers in the upcoming CVPR 2022 Conference from June 19th-23rd in New Orleans, USA. The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) is the premier annual computer vision event internationally. Homepage: https://cvpr2022.thecvf.com/

The two accepted papers are:

Summary: ZebraPose sets a new paradigm on model-based 6DoF object pose estimation by using a binary object surface encoding to train a neural network to predict the locations of model vertices in a coarse to fine manner. ZebraPose shows a major improvement over the state-of-the-art on several datasets of the BOP Object Pose Estimation benchmark.

Preprinthttps://av.dfki.de/publications/zebrapose-coarse-to-fine-surface-encoding-for-6dof-object-pose-estimation/

Contact: Yongzhi Su, Dr. Jason Rambach

Summary: We propose a novel Multi-Sphere Image representation called Soft Occlusion MSI (SOMSI) and efficient rendering technique that produces accurate spherical novel-views from a sparse spherical light-field. SOMSI models appearance features in a smaller set (e.g. 3) of occlusion levels instead of larger number (e.g. 64) of MSI spheres. Experiments on both synthetic and real-world spherical light-fields demonstrate that using SOMSI can provide a good balance between accuracy and run-time. SOMSI view synthesis quality is on-par with state-of-the-art models like NeRF, while being 2 orders of magnitude faster.

For more information, please visit the project page at https://tedyhabtegebrial.github.io/somsi

Contact: Tewodros A Habtegebrial

2 Papers accepted at BMVC 2021 Conference

We are happy to announce that the Augmented Vision group will present 2 papers in the upcoming BMVC 2021 Conference, 22-25 November, 2021:

The British Machine Vision Conference (BMVC) is the British Machine Vision Association (BMVA) annual conference on machine vision, image processing, and pattern recognition. It is one of the major international conferences on computer vision and related areas held in the UK. With increasing popularity and quality, it has established itself as a prestigious event on the vision calendar. Homepage: https://www.bmvc2021.com/  

The 2 accepted papers are:

1.  TICaM: A Time-of-flight In-car Cabin Monitoring Dataset
Authors: Jigyasa Singh Katrolia, Ahmed Elsherif, Hartmut Feld, Bruno Mirbach, Jason Raphael Rambach, Didier Stricker


Summary: TICaM is a Time-of-flight In-car Cabin Monitoring dataset for vehicle interior monitoring using a single wide-angle depth camera. The dataset goes beyond currently available in-car cabin datasets in terms of the ambit of labeled classes, recorded scenarios and annotations provided;  all at the same time. The dataset is available here: https://vizta-tof.kl.dfki.de/

Preprint:  https://www.researchgate.net/publication/355395814_TICaM_A_Time-of-flight_In-car_Cabin_Monitoring_Dataset

Video: https://www.youtube.com/watch?v=aqYUY2JzqHU

Contact: Jason Rambach

2. PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for Piece-Wise Plane Detection and Reconstruction from a Single RGB Image
Authors: Yaxu Xie, Fangwen Shu, Jason Raphael Rambach, Alain Pagani, Didier Stricker

Summary: Piece-wise 3D planar reconstruction provides holistic scene understanding of man-made environments, especially for indoor scenarios. Different from other existing approaches, we start from enforcing cross-task consistency for our multi-task convolutional neural network, PlaneRecNet, which integrates a single-stage instance segmentation network for piece-wise planar segmentation and a depth decoder to reconstruct the scene from a single RGB image.

Preprint: https://www.dfki.de/web/forschung/projekte-publikationen/publikationen-filter/publikation/11908

Contact: Alain Pagani

DFKI AV – Stellantis Collaboration on Radar-Camera Fusion – 2 publications

DFKI Augmented Vision is working with Stellantis on the topic of Radar-Camera Fusion for Automotive Object Detection using Deep Learning since 2020. The collaboration has already led to two publications, in ICCV 2021 (International Conference on Computer Vision – ERCVAD Workshop on “Embedded and Real-World Computer Vision in Autonomous Driving”) and WACV 2022 (Winter Conference on Applications of Computer Vision).

The 2 publications are:

1.  Deployment of Deep Neural Networks for Object Detection on Edge AI Devices with Runtime OptimizationProceedings of the IEEE International Conference on Computer Vision Workshops – ERCVAD Workshop on Embedded and Real-World Computer Vision in Autonomous Driving

Lukas Stefan Stäcker, Juncong Fei, Philipp Heidenreich, Frank Bonarens, Jason Rambach, Didier Stricker, Christoph Stiller

This paper discusses the optimization of neural network based algorithms for object detection based on camera, radar, or lidar data in order to deploy them on an embedded system on a vehicle.

2. Fusion Point Pruning for Optimized 2D Object Detection with Radar-Camera FusionProceedings of the IEEE Winter Conference on Applications of Computer Vision, 2022

Lukas Stefan Stäcker, Juncong Fei, Philipp Heidenreich, Frank Bonarens, Jason Rambach, Didier Stricker, Christoph Stiller

This paper introduces fusion point pruning, a new method to optimize the selection of fusion points within the deep learning network architecture for radar-camera fusion.

Please view the abstract here: Fusion Point Pruning for Optimized 2D Object Detection with Radar-Camera Fusion (dfki.de)

Contact: Dr. Jason Rambach

VIZTA Project Time-of-Flight Camera Datasets Released

As part of the research activities of DFKI Augmented Vision in the VIZTA project (https://www.vizta-ecsel.eu/), two publicly available datasets have been released and are available for download. TIMo dataset is a building indoor monitoring dataset for person detection, person counting, and anomaly detection. TICaM dataset is an automotive in-cabin monitoring dataset with a wide field of view for person detection and segmentation and activity recognition. Real and synthetic images are provided allowing for benchmarking of transfer learning algorithms as well. Both datasets are available here https://vizta-tof.kl.dfki.de/. The publication describing the datasets in detail are available as preprints.

TICaM: https://arxiv.org/pdf/2103.11719.pdf

TIMo: https://arxiv.org/pdf/2108.12196.pdf

Video: https://www.youtube.com/watch?v=xWCor9obttA

Contacts: Dr. Jason Rambach, Dr. Bruno Mirbach