We are excited to announce that the Augmented Vision group will present 3 papers in the upcoming VISAPP 2021 Conference, February 8th-10th, 2021:
The International
Conference on Computer Vision Theory and Applications (VISAPP) is part of
VISIGRAPP, the 16th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications. VISAPP aims at becoming a major
point of contact between researchers, engineers and practitioners on the area
of computer vision application systems. Homepage: http://www.visapp.visigrapp.org/
We are happy to announce
that our paper “SynPo-Net–Accurate and Fast
CNN-Based 6DoF Object Pose Estimation Using Synthetic Training” has been
accepted for publication at the MDPI Sensors journal, Special Issue Object
Tracking and Motion Analysis. Sensors (ISSN 1424-8220; CODEN: SENSC9)
is the leading international peer-reviewed open access journal on the science and technology of sensors.
Abstract: Estimation and
tracking of 6DoF poses of objects in images is a challenging problem of great
importance for robotic interaction and augmented reality. Recent approaches
applying deep neural networks for pose estimation have shown encouraging
results. However, most of them rely on training with real images of objects
with severe limitations concerning ground truth pose acquisition, full coverage
of possible poses, and training dataset scaling and generalization capability.
This paper presents a novel approach using a Convolutional Neural Network (CNN)
trained exclusively on single-channel Synthetic images of objects to regress
6DoF object Poses directly (SynPo-Net). The proposed SynPo-Net is a network
architecture specifically designed for pose regression and a proposed domain
adaptation scheme transforming real and synthetic images into an intermediate
domain that is better fit for establishing correspondences. The extensive
evaluation shows that our approach significantly outperforms the
state-of-the-art using synthetic training in terms of both accuracy and speed.
Our system can be used to estimate the 6DoF pose from a single frame, or be
integrated into a tracking system to provide the initial pose.
The Winter Conference on Applications of Computer Vision (WACV 2021) is IEEE’s and the PAMI-TC’s premier meeting on applications of computer vision. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers. In 2021, the conference is organized as a virtual online event from January 5th till 9th, 2021.
Abstract: This paper demonstrates a system capable of combining a sparse, indirect, monocular visual SLAM, with both offline and real-time Multi-View Stereo (MVS) reconstruction algorithms. This combination overcomes many obstacles encountered by autonomous vehicles or robots employed in agricultural environments, such as overly repetitive patterns, need for very detailed reconstructions, and abrupt movements caused by uneven roads. Furthermore, the use of a monocular SLAM makes our system much easier to integrate with an existing device, as we do not rely on a LiDAR (which is expensive and power consuming), or stereo camera (whose calibration is sensitive to external perturbation e.g. camera being displaced). To the best of our knowledge, this paper presents the first evaluation results for monocular SLAM, and our work further explores unsupervised depth estimation on this specific application scenario by simulating RGB-D SLAM to tackle the scale ambiguity, and shows our approach produces econstructions that are helpful to various agricultural tasks. Moreover, we highlight that our experiments provide meaningful insight to improve monocular SLAM systems under agricultural settings.
Abstract: Images recorded during the lifetime of computer vision based systems undergo a wide range of illumination and environmental conditions affecting the reliability of previously trained machine learning models. Image normalization is hence a valuable preprocessing component to enhance the models’ robustness. To this end, we introduce a new strategy for the cost function formulation of encoder-decoder networks to average out all the unimportant information in the input images (e.g. environmental features and illumination changes) to focus on the reconstruction of the salient features (e.g. class instances). Our method exploits the availability of identical sceneries under different illumination and environmental conditions for which we formulate a partially impossible reconstruction target: the input image will not convey enough information to reconstruct the target in its entirety. Its applicability is assessed on three publicly available datasets. We combine the triplet loss as a regularizer in the latent space representation and a nearest neighbour search to improve the generalization to unseen illuminations and class instances. The importance of the aforementioned post-processing is highlighted on an automotive application. To this end, we release a synthetic dataset of sceneries from three different passenger compartments where each scenery is rendered under ten different illumination and environmental conditions: https://sviro.kl.dfki.de