Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik

Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Muhammad Asad Ali

Jilliam Maria Diaz Barros

Ramy Battrawy
Katharina Bendig
Hammad Butt

Mahdi Chamseddine
Chun-Peng Chang

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi

Dr. Anna Katharina Hebborn

Hamoun Heidarshenas
Henri Hoyez

Alireza Javanmardi
M.Sc. Sai Srinivas Jeevanandam

Jigyasa Singh Katrolia

Matin Keshmiri

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Shashank Mishra

Pramod Murthy

Mathias Musahl
Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav

Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan

Shaoxiang Wang
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
An Adversarial Training based Framework for Depth Domain Adaptation
An Adversarial Training based Framework for Depth Domain Adaptation
Jigyasa Singh Katrolia, Lars Krämer, Jason Raphael Rambach, Bruno Mirbach, Didier Stricker
Proceedings of the 16th VISAPP. International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP-2021) 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications February 8-10 online Springer 2021 .
- Abstract:
- In absence of sufficient labeled training data, it is common practice to resort to synthetic data with readily available annotations. However, some performance gap still exists between deep learning models trained on synthetic versus on real data. Using adversarial training based generative models, it is possible to translate images from synthetic to real domain and train on them easily generalizable models for real-world datasets, but the efficiency of this method is limited in the presence of large domain shifts such as between synthetic and real depth images characterized by depth sensor and scene dependent artifacts in the image. In this paper, we present an adversarial training based framework for adapting depth images from synthetic to real domain. We use a cyclic loss together with an adversarial loss to bring the two domains of synthetic and real depth images closer by translating synthetic images to real domain, and demonstrate the usefulness of synthetic images modified this way for training deep neural networks that can perform well on real images. We demonstrate our method for the application of person detection and segmentation in real-depth images captured in a car for in-cabin person monitoring. We also show through experiments the effect of using target domain image sets captured using different types of depth sensors on this domain adaptation approach.