News Archive
  • September 2025
  • July 2025
  • June 2025
  • May 2025
  • March 2025
  • February 2025
  • December 2024
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024

EU Project BERTHA starts with participation of DFKI AV and ASR departments

The BERTHA project receives EU funding to develop a Driver Behavioral Model that will make autonomous vehicles safer and more human-like

  • The project, funded by the European Union with Grant Agreement nº 101076360, will receive 7.9 M€ under the umbrella of the Horizon Europe programme.
  • The BERTHA project will develop a scalable and probabilistic Driver Behavioral Model which will be key to achieving safer and more human-like connected autonomous vehicles, thus increasing their social acceptance. The solution will be available for academia and industry through an open-source data HUB and in the CARLA autonomous driving simulator.
  • The project’s consortium gathered on 22-24 November for the kick-off meeting, hosted by the coordinator Instituto de Biomecánica de Valencia at its facilities in Spain.

The Horizon Europe project BERTHA kicked off on November 22nd-24th in Valencia, Spain. The project has been granted €7,981,799.50 from the European Commission to develop a Driver Behavioral Model (DBM) that can be used in connected autonomous vehicles to make them safer and more human-like. The resulting DBM will be available on an open-source HUB to validate its feasibility, and it will also be implemented in CARLA, an open-source autonomous driving simulator.

The BERTHA consortium is formed by 14 partners from 6 different countries, coordinated by Instituto de Biomecánica de Valencia (IBV) (ES). The other partners are Institut Vedecom (FR), Université Gustave Eiffel (FR), German Research Center for Artificial Intelligence (DE), Computer Vision Center (ES), Altran Deutschland (DE), Continental Automotive France (FR), CIDAUT Foundation (ES), Austrian Institute of Technology (AT), Universitat de València (ES), Europcar International (FR), FI Group (PT), Panasonic Automotive Systems Europe (DE) and the Korea Transport Institute (KOTI).

The project celebrated its kick-off meeting on November 22nd to 24th, hosted by the coordinator Instituto de Biomecánica de Valencia (IBV) at its offices in Valencia, Spain. During the event, all partners met each other, shared their technical backgrounds and presented their expected contributions to the project.

The need for a Driver Behavioral Model in the CCAM industry

The industry of Connected, Cooperative, and Automated Mobility (CCAM) presents important opportunities for the European Union. However, its deployment requires new tools that enable the design and analysis of autonomous vehicle components, together with their digital validation, and a common language between Tier vendors and OEM manufacturers.

One of the shortcomings arises from the lack of a validated and scientifically based Driver Behavioral Model (DBM) to cover the aspects of human driving performance, which will allow to understand and test the interaction of connected autonomous vehicles (CAVs) with other cars in a safer and predictable way from a human perspective.

Therefore, a Driver Behavioral Model could guarantee digital validation of the components of autonomous vehicles and, if incorporated into the ECUs software, could generate a more human-like response of such vehicles, thus increasing their acceptance.

The contributions of BERTHA to the autonomous vehicles industry and research

To cover this need in the CCAM industry, the BERTHA project will develop a scalable and probabilistic Driver Behavioral Model (DBM), mostly based on Bayesian Belief Network, which will be key to achieving safer and more human-like autonomous vehicles.

The new DBM will be implemented on an open-source HUB, a repository that will allow industrial validation of its technological and practical feasibility, and become a unique approach for the model’s worldwide scalability.

The resulting DBM will be translated into CARLA, an open-source simulator for autonomous driving research developed by the Spanish partner Computer Vision System. The implementation of BERTHA’s DBM will use diverse demos which allow the building of new driving models in the simulator. This can be embedded in different immersive driving simulators as HAV from IBV.

BERTHA will also develop a methodology which, thanks to the HUB, will share the model with the scientific community to ease its growth. Moreover, its results will include a set of interrelated demonstrators to show the DBM approach as a reference to design human-like, easily predictable, and acceptable behaviour of automated driving functions in mixed traffic scenarios.

Contacts: Dr. Jason Rambach (DFKI AV)

                 Dr. Christian Müller (DFKI ASR)

                  Igor Vozniak (DFKI ASR)

Best Poster Award at BMVC 2023

Congratulations to Ramy Battrawy for his best poster Award at BMVC 2023, https://bmvc2023.org, for his paper.

“EgoFlowNet: Non-Rigid Scene Flow from Point Clouds with Ego-Motion Support”

Ramy Battrawy (DFKI),* René Schuster (DFKI), Didier Stricker (DFKI), BMVC 2023

Please check the paper and the video under: https://proceedings.bmvc2023.org/441/

Kick-Off-Treffen des KIMBA Forschungsvorhabens// Kick-off meeting of the KIMBA research project.

Teilnehmer des Kick-Off-Treffens des KIMBA Forschungsvorhabens stehen vor einem mobilen Prallbrecher von Projektpartner KLEEMANN. // Participants of the kick-off meeting of the KIMBA research project standing in front of a mobile impact crusher from project partner KLEEMANN

[Deutsche Version]

Im Rahmen der Digital GreenTech Konferenz 2023 in Karlsruhe wurden kürzlich 14 neue Forschungsprojekte aus den Bereichen Wasserwirtschaft, nachhaltiges Landmanagement, Ressourceneffizienz und Kreislaufwirtschaft vorgestellt, darunter auch Kimba. Hierbei arbeiten wir gemeinsam mit unseren Projektpartnern an einer KI-basierten Prozesssteuerung und automatisiertem Qualitätsmanagement für das Recycling von Bau- und Abbruchabfällen in Echtzeit. Das spart Kosten, Zeit sowie Ressourcen und schont die Umwelt. So unterstützen wir die Baubranche auf ihrem Weg in die Zukunft.

Weitere Informationen zu KIMBA finden sich unter: https://www.ants.rwth-aachen.de/cms/IAR/Forschung/Aktuelle-Forschungsprojekte/~bdikqm/KIMBA/

Kontakt: Dr. Jason Rambach , Dr. Bruno Mirbach

[English Version]

At the Digital GreenTech Conference 2023 in Karlsruhe, 14 new research projects in the fields of water management, sustainable land management, resource efficiency and circular economy were recently presented, including Kimba. Here, we are working with our project partners on AI-based process control and automated quality management for recycling construction and demolition waste in real time. This saves costs, time and resources and protects the environment. This is how we support the construction industry on its way into the future.

Further Information to KIMBA can be found under: https://www.ants.rwth-aachen.de/cms/IAR/Forschung/Aktuelle-Forschungsprojekte/~bdikqm/KIMBA/

Contact: Dr. Jason Rambach, Dr. Bruno Mirbach

Kick-Off-Treffen des ReVise-UP Forschungsvorhabens. Kick-off meeting of the ReVise-UP research project.

Alt-Text: Teilnehmer des Kick-Off-Treffens des ReVise-UP Forschungsvorhabens stehen vor dem Bergbaugebäude der RWTH Aachen University. // Participants of the kick-off meeting of the ReVise-UP research project stand in front of the mining building of RWTH Aachen University.

Deutsche Version

Forschungsvorhaben „ReVise-UP“ zur Verbesserung der Prozesseffizienz des werkstofflichen Kunststoffrecyclings mittels Sensortechnik gestartet

Im September 2023 startete das vom BMBF geförderte Forschungsvorhaben ReVise-UP („Verbesserung der Prozesseffizienz des werkstofflichen Recyclings von Post-Consumer Kunststoff-Verpackungsabfällen durch intelligentes Stoffstrommanagement – Umsetzungsphase“).  In der vierjährigen Umsetzungsphase soll die Transparenz und Effizienz des werkstofflichen Kunststoffrecyclings durch Entwicklung und Demonstration sensorbasierter Stoffstromcharakterisierungsmethoden im großtechnischen Maßstab gesteigert werden.

Auf Basis der durch Sensordaten erzeugten Datentransparenz soll das bisherige Kunststoffrecycling durch drei Effekte verbessert werden: Erstens sollen durch die Datentransparenz positive Anreize für verbesserte Sammel- und Produktqualitäten und damit gesteigerte Rezyklatmengen und -qualitäten geschaffen werden. Zweitens sollen sensorbasiert erfasste Stoffstromcharakteristika dazu genutzt werden, Sortier-, Aufbereitungs- und Kunststoffverarbeitungsprozesse auf schwankende Stoffstromeigenschaften adaptieren zu können. Drittens soll die verbesserte Datenlage eine ganzheitliche ökologische und ökonomische Bewertung der Wertschöpfungskette ermöglichen.

An ReVise-UP beteiligen sich insgesamt 18 Forschungsinstitute, Verbände und Industriepartner. Das Bundesministerium für Bildung und Forschung (BMBF) fördert ReVise-UP im Rahmen der Förderrichtlinie „Ressourceneffiziente Kreislaufwirtschaft – Kunststoffrecyclingtechnologien (KuRT)” mit 3,92 Mio. €.

Weitere Informationen zu ReVise-UP finden sich unter: https://www.ants.rwth-aachen.de/cms/IAR/Forschung/Aktuelle-Forschungsprojekte/~bdueul/ReVise-UP/

Verbundpartner in ReVise-UP sind:

Als assoziierte Partner wird ReVise-UP unterstützt von:

Kontakt: Dr. Jason Rambach , Dr. Bruno Mirbach

English version

Research project “ReVise-UP” started to improve the process efficiency of mechanical plastics recycling using sensor technology

In September 2023, the BMBF-funded research project ReVise-UP (“Improving the process efficiency of mechanical recycling of post-consumer plastic packaging waste through intelligent material flow management – implementation phase”) started. In the four-year implementation phase, the transparency and efficiency of mechanical plastics recycling is to be increased by developing and demonstrating sensor-based material flow characterization methods on an industrial scale.


Based on the data transparency generated by sensor data, the current plastics recycling shall be improved by three effects: First, data transparency is intended to create positive incentives for improved collection and product qualities and thus increased recyclate quantities and qualities. Second, sensor-based material flow characteristics are to be used to adapt sorting, treatment and plastics processing processes to fluctuating material flow properties. Third, the improved data situation should enable a holistic ecological and economic evaluation of the value chain.

A total of 18 research institutes, associations and industrial partners are participating in ReVise-UP. The German Federal Ministry of Education and Research (BMBF)v is funding ReVise-UP with €3.92 million as part of the funding guideline “Resource-efficient recycling management – plastics recycling technologies (KuRT)”.

More information about ReVise-UP can be found at: https://www.ants.rwth-aachen.de/cms/IAR/Forschung/Aktuelle-Forschungsprojekte/~bdueul/ReVise-UP/?lidx=1

Project partners in ReVise-UP are:

Associated partners in ReVise-UP are:

Contact: Dr. Jason Rambach , Dr. Bruno Mirbach

DFKI Augmented Vision Researchers win 3 awards in Object Pose Estimation challenge (BOP Challenge, ICCV 2023)

DFKI Augmented Vision researchers Praveen Nathan, Sandeep Inuganti, Yongzhi Su and Jason Rambach received their 1st place award in the prestigious BOP Object Pose Estimation Challenge 2023 in the categories Overall Best RGB Method, Overall Best Segmentation Method and The Best BlenderProc-Trained Segmentation Method.

The BOP benchmark and challenge addresses the problem of 6-degree-of-freedom object pose estimation, which is of great importance for many applications such as robot grasping or augmented reality. This year, the BOP challenge was held within the “8th International Workshop on Recovering 6D Object Pose (R6D)” http://cmp.felk.cvut.cz/sixd/workshop_2023/  at the International Conference on Computer Vision (ICCV) in Paris, France https://iccv2023.thecvf.com/  .

The awards were received by Yongzhi Su and Dr. Jason Rambach on behalf of the DFKI Team and a short presentation of the method followed. The winning method was based on the CVPR 2022 paper “ZebraPose”  

The winning approach was developed by a team led by DFKI AV, with contributing researchers from Zhejiang University.

List of contributing researchers:

DFKI Augmented Vision: Praveen Nathan, Sandeep Inuganti, Yongzhi Su, Didier Stricker, Jason Rambach

Zhejiang University:  Yongliang Lin, Yu Zhang

A new European network of excellence, dAIEdge has been launched under the leadership of Augmented Vision department at DFKI

On the 5th and 6th of September 2023, the new EU project dAIEdge “A network of excellence for distributed, trustworthy, efficient and scalable AI at the Edge“ officially took off.

The kick-off meeting held at DFKI in Kaiserslautern was an excellent occasion to meet with the 36 partners from 15 European countries and launch the activities of the network!

The main goal of dAIEDGE is to support and ensure the rapid development and market adoption of distributed edge AI technologies, such as hardware, software, frameworks, and tools.

The applications of dAIEDGE will be used in a wide range of domains, such as the Internet of Things (IoT), intelligent transportation systems, satellite imagery and robotics.

The network has a project volume of €14.4 million, of which €10.7 million is funded by the European Union. Looking forward to a fruitful collaboration and a successful project!

Contact persons:

Dr. Alain Pagani

Dr. Mohamed Selim

DFKI AV – Stellantis Collaboration on Radar-Camera Fusion – Papers at GCPR and EUSIPCO

DFKI Augmented Vision is collaborating with Stellantis on the topic of Radar-Camera Fusion for Automotive Object Detection using Deep Learning. Recently, two new publications were accepted to the GCPR 2023 and EUSIPCO 2023 conferences.

The 2 new publications are:

1.  Cross-Dataset Experimental Study of Radar-Camera Fusion in Bird’s-Eye ViewProceedings of the 31st. European Signal Processing Conference (EUSIPCO-2023), September 4-8, Helsinki, Finland, IEEE, 2023.

Lukas Stefan Stäcker, Philipp Heidenreich, Jason Rambach, Didier Stricker

This paper investigates the influence of the training dataset and transfer learning on camera-radar fusion approaches, showing that while the camera branch needs large and diverse training data, the radar branch benefits more from a high-performance radar.

Cross-Dataset Experimental Study of Radar-Camera Fusion in Bird’s-Eye View

2. RC-BEVFusion: A Plug-In Module for Radar-Camera Bird’s Eye View Feature FusionProceedings of. Annual Symposium of the German Association for Pattern Recognition (DAGM-2023), September 19-22, Heidelberg, BW, Germany, DAGM, 9/2023.

Lukas Stefan Stäcker, Shashank Mishra, Philipp Heidenreich, Jason Rambach, Didier Stricker

This paper introduces a new Bird’s Eye view fusion network architecture for camera-radar fusion for 3D object detection that performs favorably on the NuScenes dataset benchmark.

RC-BEVFusion: A Plug-In Module for Radar-Camera Bird’s Eye View Feature Fusion

Contacts: Dr. Jason Rambach

ICCV 2023: 4 papers accepted

We are happy to announce that the Augmented Vision group will present 4 papers in the upcoming ICCV 2023 Conference, 2-6 October, Paris, France. The IEEE/CVF International Conference in Computer Vision (ICCV) is the premier international computer vision event. Homepage: https://iccv2023.thecvf.com/  

The 4 accepted papers are:

  1. U-RED: Unsupervised 3D Shape Retrieval and Deformation for Partial Point Clouds
    Yan Di, Chenyangguang Zhang, Ruida Zhang, Fabian Manhardt, Yongzhi Su, Jason Raphael Rambach, Didier Stricker, Xiangyang Ji, Federico Tombari
  2. FeatEnHancer: Enhancing Hierarchical Features for Object Detection and Beyond Under Low-Light Vision. Khurram Azeem Hashmi, Goutham Kallempudi, Didier Stricker, Muhammad Zeshan Afzal
  3. Introducing Language Guidance in Prompt-based Continual Learning Muhammad Gulzain Ali Khan, Muhammad Ferjad Naeem; Luc Van Gool; Federico  Tombari; Didier Stricker, Muhammad Zeshan Afzal
  4. DELO: Deep Evidential LiDAR Odometry using Partial Optimal Transport Sk Aziz Ali, Djamila Aouada, Gerd Reis, Didier Stricker
AI-Observer Summer School

The first AI-Observer Summer School was held at the Eratosthenes Center of Excellence in Limassol, Cyprus, from July 10-14. Training sessions were given by Prof. Fabio Del Frate, Giorgia Guerrisi and Lorenzo Giuliano Papale (Tor Vergata University of Rome), and Dr. Gerd Reis (German Research Center for Artificial Intelligence). During the five-day hybrid event, more than 50 participants learned about the application of artificial intelligence in Earth observation, with special focus on disaster risk management. Topics included deforestation, flood detection, and natural hazard management using Sentinel-1 Synthetic Aperture RADAR (SAR), and Sentinel-2 Multi-Spectral Imaging (MSI) data.

AI-OBSERVER consortium:
Eratosthenes Center of Excellence
Deutsches Forschungszentrum für Künstliche Intelligenz
Università degli Studi di Roma Tor Vergata
Cellock Ltd.

Michael Lorenz won a best Paper award

We are glad to announce that our colleague Michael Lorenz won a best Paper award for his work On Motions artifacts arising when integrating inertial sensors into loose clothing such as a working jacket.

Abstract

  • Inertial human motion capture (IHMC) has become a robust tool to estimate human kinematics in the wild such as industrial facilities.
  • In contrast to optical motion capture, where occlusions might take place, the kinematics of a worker can be continuously provided.
  • This is for instance a prerequisite for an ergonomic assessments of the workers.
  • State-of-the-art IHMC solutions require inertial sensors to be tightly attached to body segments.
  • This requires an additional setup time and lowers the practicability and ease of use when it comes to an industrial application.
  • In contrast, sensors integrated into loose clothing such as a working jacket, may yield corrupted kinematics estimates due to the additional motion of loose clothing.
  • In this work we present a study of orientations deviations obtained from kinematics estimates using tightly attached inertial sensors and into a working jacket integrated ones.
  • We performed a quantitative analysis using data from the two hardware setups worn by 19 subjects performing different industry related tasks and measures of their body shapes.
  • Using this data we approximated probability distributions of the deviation angles for each person and body segment.
  • Applying different statistical measures we could gain insights to questions like, how severe orientation deviations are, if there is an influence of body shapes on the distribution and how probability distributions of the deviation angles can indicate physical motion limitations of a sensor attached to a segment.
3rd place in Scan-to-BIM challenge (CV4_AEC Workshop, CVPR 2023) for HumanTech project team

The team of the EU Horizon Project HumanTech , consisting of Mahdi Chamseddine and Dr. Jason Rambach from DFKI Augmented Vision as well as Fabian Kaufmann from RPTU Kaiserslautern – department of Civil Engineering, received the 3rd place prize in the Scan-to-BIM challenge of the (Computer Vision in the Built Environment) CV4_AEC Workshop of the CVPR 2023 conference.

On the 18.6, the team presented their solution and results as part of the workshop program. Scan-to-BIM solutions are of great importance for the construction community as they automate the generation of as-built models of buildings from 3D scans, and can be used for quality monitoring, robotic task planning and XR visualization, among other applications.

HumanTech project: https://humantech-horizon.eu/

CV4AEC Workshop page: https://cv4aec.github.io/

Contact: Dr. Jason Rambach , Mahdi Chamseddine

Special Issue on the IEEE ARSO 2023 Conference: Human Factors in Construction Robotics

Dr. Jason Rambach, coordinator of the EU Horizon Project HumanTech co-organized a special session on “Human Factors in Construction Robotics” at the IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO 2023) in Berlin, Germany (5.6-7.6). The organization of the special session was done by Jason Rambach, Gabor Sziebig, Research Manager at SINTEF, and Mihoko Niitsuma, Professor at Chuo University.

The program of the special session included the following talks:

  • Serena Ivaldi (INRIA) – Teleoperating a robot for removing asbestos tiles on roofs: Insights from a pilot study
  • Jason Rambach (DFKI) – Machine perception for human-robot handover scenarios in construction
  • Patricia Helen Rosen (BAUA) – Design recommendations for construction robots – a human-centred perspective
  • Dimitrios Giakoumis (CERTH ITI) – Designing human-robot interaction interfaces for shotcrete construction robots; the RobetArme project case

HumanTech project: https://humantech-horizon.eu/

Contact: Dr. Jason Rambach

Paper accepted at the ICRA conference

We are happy to announce that our paper titled

Structure PLP-SLAM: Efficient Sparse Mapping and Localization using Point, Line and Plane for Monocular, RGB-D and Stereo CamerasFangwen Shu, Jiaxuan Wang, Alain Pagani, Didier Stricker

has been accepted at the IEEE International Conference on Robotics and Automation (ICRA) 2023.

In this paper, we present a visual SLAM system that uses both points and lines for robust camera localization, and
simultaneously performs a piece-wise planar reconstruction (PPR) of the environment to provide a structural map in
real-time. Our proposed SLAM tightly incorporates the semantic and geometric features to boost both frontend pose tracking and backend map optimization.

The ICRA conference takes place this year in London, from May 29th to June 2nd.

Contact: Dr. Alain Pagani

Learning 6DoF Object Poses from Synthetic Single Channel Images

[vc_row][vc_column][vc_column_text]Learning 6DoF Object Poses from Synthetic Single Channel Images

by Jason Raphael Rambach, Chengbiao Deng, Alain Pagani, Didier Stricker  has been accepted at ISMAR 2018.

The paper will be presented in a poster session. The conference will take place in Munich from 16 – 20th October 2018.

The IEEE ISMAR is the leading international academic conference in the fields of Augmented Reality and Mixed Reality.
The symposium is organized and supported by the IEEE Computer Society and IEEE VGTC.[/vc_column_text][/vc_column][/vc_row]

Project „Eyes of Things“ concludes with best achievements

The Augmented Vision Group of the German Research Center for Artificial Intelligence (DFKI) presented the results of the European project “Eyes of Things” (Grant number 643924) during a final review in September 2018, together with seven partners from across Europe. Following the overall goal of the project, the consortium delivered a miniature and independent Computer Vision system based on a low-power and dedicated vision processor from the company Intel Movidius, with interfaces to three different energy-efficient cameras (AMS-Awaiba NanEye, Sony, Himax). The battery-powered device has a very small form factor, and is able to run computer vision tasks continuously (“always on”) for several days. The developed wireless interface allows for exchanging processed data with companion devices (tablets, smartphones) or for storing information in the cloud. The versatility of the Eyes Of Things device could be successfully demon-strated through the development of four different applications: A doorbell surveillance application which notifies the house owner about visits on his smartphone, a therapy doll which analyses the emotion profile of young patients through vision-based emotion recognition, a multi-purpose camera which synchronizes user-defined events in a cloud-based virtual memory and an intelligent audio guide for museums which recognizes artworks and automatically plays contextual audio comments. During the review, the partners presented the results of pilot tests for all demonstrators.  The consortium received the mention “all project aims have been successfully achieved”, which is the highest possible review outcome. Two of the project’s demonstrators – the multi-purpose surveillance camera and the Augmented Museum Guide – will be developed and commercialized as user products in partnership with DFKI in the upcoming months.

Contact: Dr. Alain Pagani

 

AV group co-organized ACM CSCS’18

The Augmented Vision Group of the German Research Center for Artificial Intelligence (DFKI) co-organized the 2. ACM Computer Science in Cars Symposium 2018 (CSCS’18). CSCS is an annual symposium aiming to create bridges between academic research on the one hand and practitioners from the automotive industry on the other. The two days event combined a single track program with invited keynotes, academic oral presentations, poster presentations and a panel discussion. The symposium provided a platform for industry and academia to exchange ideas and meet these future challenges jointly. The focus of the 2018 symposium was Artificial Intelligence & Security for Autonomous Vehicles.

In the panel discussion the current challenges of Artificial Intelligence for ASAS and Autonomous Vehicles were discussed with experts in this domain. Amongst others the validation of AI systems, the required vision sensor setup and training data, user acceptance, legal challenges, and many more were discussed. The panel was moderated by the AV-member Dr. Oliver Wasenmüller.

CSCS panel discussion: Dr. Oliver Wasenmüller (Team Leader Machine Vision, DFKI), Georg Kuschk (Team Leader Machine Learning, Astyx), Karl Leiss (CEO, BIT-TS), Prof. Dr. Christoph Sorge (Professor Legal Informatics, UdS), Prof. Dr. Christoph Stiller (Director Institute MRT, KIT), Dr. Shervin Raafatnia (AI Validation Engineer, Bosch).

CSCS panel discussion: Dr. Oliver Wasenmüller (Team Leader Machine Vision, DFKI), Georg Kuschk (Team Leader Machine Learning, Astyx), Karl Leiss (CEO, BIT-TS), Prof. Dr. Christoph Sorge (Professor Legal Informatics, UdS), Prof. Dr. Christoph Stiller (Director Institute MRT, KIT), Dr. Shervin Raafatnia (AI Validation Engineer, Bosch).

Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional Networks

…by Kripasindhu Sarkar, Basavaraj Hampiholi, Kiran Varanasi, Didier Stricker  is accepted in ECCV 2018.

The ECCV-series is a premiere conference of computer vision, organized in alteration with ICCV, the international version on the same topic. Where ICCV is organized on odd years, ECCV is organized on even years. This year ECCV will take place in Munich from 08 – 14 September.

3 accepted papers at 3DVision 2018

Our team members are presenting the following papers at 6th international conference on 3D Vision:

DeepHPS: End-to-end Estimation of 3D Hand Pose and Shape by Learning from Synthetic Depth by
Jameel Malik; Ahmed Elhayek; Fabrizio Nunnari; Kiran Varanasi; Kiarash Tamaddon; Alexis Heloir; Didier Stricker

NRGA: Gravitational Approach for Non-Rigid Point Set Registration by
Sk Aziz Ali; Vladislav Golyanik; Didier Stricker

Structured Low-Rank Matrix Factorization for Point-Cloud Denoising by
Kripasindhu Sarkar; Florian Bernard; Kiran Varanasi; Christian Theobalt; Didier Stricker

 

3D Vision will be held in Verona, Italy, September 5 – 8, 2018. It is a rapidly growing conference focusing on all aspects of 3D vision and 3D processing. 3DV provides “a premier platform for disseminating research results covering a broad variety of topics in the area of 3D research in computer vision and graphics, from novel optical sensors, signal processing, geometric modeling, representation and transmission, to visualization and interaction, and a variety of applications”.

More information on the conference program can be found here.

 

Anja Karliczek, Federal Minister of Education and Research visits DFKI

On 24th of July DFKI was honoured with a top-class visit. Accompanied by Prof. Dr. Konrad Wolf, Minister of Science of Rhineland-Palatinate, Federal Minister Anja Karliczek gained insights into current research trends in digital education, machine learning, and the role of people in the factory of the future.

20180724_karliczek2-web

Prof. Didier Stricker explains to Federal Minister Anja Karliczek the system demonstration on “Intelligent verification of the driver’s willingness to take over the vehicle control”. This is based on image and behavior analyses. Photo: DFKI

More detailed information about the visit as well as further pictures can be found in the DFKI press release.

Augmented Vision department awarded as „Ausgezeichnete Orte im Land der Ideen“

The Augmented Vision department of DFKI was honored as one of the 100 innovative award winners of the competition “Ausgezeichnete Orte im Land der Ideen – Excellent Places in the Country of Ideas” in Berlin on June 4th 2018 during a ceremony in Berlin.

An independent jury selected the projects from almost 1,500 submitted applications. A certificate signed by the Federal President as well as a panel of honor will make the award visible. According to the annual motto “Connecting Worlds – Strengthening Cohesion”, the Augmented Vision department shows how innovations emerge in research and explore “AI for humans”. The department researches on different application areas of Computer Vision, such as Augmented Reality, Medicine and Automotive. The jury highlighted the project “Alter Ego” as particularly praiseworthy in which a digital twin helps patients with social disorders to improve their communication skills.

Dr. Oliver Wasenmüller received the award in Berlin representative for the department Augmented Vision. (credits: Deutschland – Land der Ideen/Bernd Brundert)

Dr. Oliver Wasenmüller received the award in Berlin representative for the department Augmented Vision. (credits: Deutschland – Land der Ideen/Bernd Brundert)