News Archive
  • December 2024
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023

SIMILAR

Scalable Information Visualization on Mobile Devices

Skalierbare Informationsvisualisierung auf mobilen Endgeräten

Bei der Betriebsführung siedlungswasserwirtschaftlicher Anlagen sind erhebliche Defizite und große Optimierungspotenziale vorhanden. Der zunehmende Wettbewerb zwischen den Entsorgern wird die Betriebe in den nächsten Jahren zwingen, diese Potenziale zu erschließen. Es muss somit nach Mitteln und Wegen gesucht werden, wie die Prozesse in der Siedlungswasserwirtschaft transparenter gemacht und ökonomisch und ökologisch optimiert werden können. Ein (innovativer) Ansatz, dieses Ziel zu erreichen, besteht darin, dem Betriebspersonal (mobile) Werkzeuge an die Hand zu geben, welche Informationen geeignet aufbereitet objekt- und/oder verrichtungsorientiert visualisieren und die Entscheidungsfindung unterstützen.

Ziel des Projektes “SIMILAR – Skalierbare Informationsvisualisierung auf mobilen Endgeräten zur effizienten Informationsvermittlung und betrieblichen Leistungssteigerung im Bereich von Abwasseranlagen” ist die Konzeption und Entwicklung eines Frameworks sowie eines Technologiedemonstrators für ein flexibles, mobiles Informationsvisualisierungssystem im Bereich von Abwasseranlagen. Anhand des Demonstrators sollen beispielhaft mögliche Anwendungen im Bereich der Betriebsführung umgesetzt werden. Dabei sollen modernste mobile Geräte, sowie aktuelle Übertragungstechnologien wie Bluetooth, GPRS oder auch UMTS zum Einsatz kommen.

ARinfuse

Infusing skills in Augmented Reality for geographical information management in the utility sector

Infusing skills in Augmented Reality for geographical information management in the utility sector

ARinfuse is an European project funded under Erasmus+, the EU’s programme to support education, training, youth and sport in Europe.

The objective of ARinfuse is to support individuals in acquiring and developing basic skills and key competences within the field of geoinformatics and utility infrastructure, in order to foster employability. This objective is addressed through the development of new learning modules where Augmented Reality technologies are merged with geoinformatics and applied within the utility infrastructure sector. The developed digital learning content and tools will be implemented in university programs as well as in vocational training programs, and will be made available as Open Educational Resources, open textbooks and Open Source Educational Software.

Partners

  • GeoImaging Ltd (Cyprus)
  • Novogit AB (Sweden)
  • Cyprus University of Technology (Cyprus)
  • GISIG Association (Italy)
  • Sewerage Board of Nicosia (Cyprus)
  • Flanders Environment Agency (VMM, Belgium)
  • DFKI GmbH

Contact

Dr.-Ing. Alain Pagani

EMERGENT

Fundamentals of Emergent Software

Fundamentals of Emergent Software

Today, companies are confronted with rapid changes within their environment. Thus, open market places are developed in the Internet to satisfy more and more individual customer requirements. New innovations in information and communication technology (ICT) are generated at high speed and completely new value chains and business models evolve across corporate boundaries. Now in the face of those changes, companies will only be able to preserve and strengthen their economic productivity if they move towards so-called digital companies, in which ICT is the key driver for product and process innovations. The goal of EMERGENT is to lay the foundations for this change. For this purpose, basic methods, techniques, algorithms and data structures for emergent software are explored and developed.

The term emergent software represents a new category of innovative information systems that arise from the cross-company interaction of individual components and services on the Internet of things and services. The use of emergent software allows a dynamic adaptation to the requirements of the market and supports the handling of complex and dynamic business processes thereby enabling innovative services in the future Internet. This constitutes on the one hand a significant competitive advantage for manufacturers of enterprise software as opposed to conventionally organized, static businesses software solutions. On the other hand, it also increases the value-creation significantly for users of emergent software, especially for small and medium enterprises.

CONTACT

Control and Animation of Cognitive Characters

Control and Animation of Cognitive Characters

The purpose of the CONTACT project is to take a first step towards the broad goal of building a general animation and simulation framework for cognitive, human-like, autonomous characters. The objective of this research is to develop a working platform for future autonomous characters, where users could define high level goals, and virtual characters determine appropriate actions based on specific domain knowledge and AI techniques. The user will also be allowed to overrule the character’s decision and for example force the character to fall back on some predefined behaviour. In case an action implies the movement of a character, the corresponding motion sequence will be created by adapting reference motions provided by a motion database.

VIDETE

Generation of prior knowledge with the help of learning systems for 4D analysis of complex scenes

Generation of prior knowledge with the help of learning systems for 4D analysis of complex scenes

Motivation

Artificial intelligence currently influences many areas, including machine vision. For applications in the fields of autonomous systems, medicine and industry there are fundamental challenges: 1) generating prior knowledge to solve severely under-determined problems, 2) verifying and explaining the response calculated by the AI, and 3) providing AIs in scenarios with limited computing power.

Goals and Procedure

The goal of VIDETE is to use AI to generate prior knowledge using machine learning processes, thus making previously unsolvable tasks such as the reconstruction of dynamic objects practically manageable with just one camera. With suitable prior knowledge it will be easier to analyze and interpret general scenes, for example in the area of autonomous systems, with the help of algorithms. Furthermore, methods will be developed to justify the calculated results before they are used further. In the field of medicine this would be comparable to the opinion of a colleague in contrast to the general answers of current AI methods. A key technique is considered to be the modularization of algorithms, which will especially increase the availability of AI. Modular components can be realized efficiently in hardware. Thus, calculations (e.g. the recognition of a gesture) can be performed close to the generating sensor. This, in turn, enables semantically enriched information to be communicated with low overhead, which means that AI can also be used on mobile devices with low resources available.

Innovations and Perspectives

Artificial intelligence finds its way into almost all areas of daily life and work. The results expected from the VIDETE project will be independent of the defined research scenarios and can contribute to progress in many application areas (private life, industry, medicine, autonomous systems, etc.).

Contact

Dr. Dipl.-Inf. Gerd Reis

SYNERGIE

System zur Optimierung der Energieeffizienz von Kommunalen Kläranlagen durch Intelligentes Wissensmanagement

System zur Optimierung der Energieeffizienz von Kommunalen Kläranlagen durch Intelligentes Wissensmanagement

Im Rahmen des Projekts SYNERGIE wird ein intelligentes Energiemanagementsystem für Kläranlagen entwickelt. Es erfasst und verknüpft alle für den Themenbereich “Energie auf Kläranlagen” relevanten Informationen und bietet gleichzeitig Mechanismen, die eine systemübergreifende Optimierung der Energieerzeugung und -nutzung (inkl. der anfallenden Wärme) ermöglichen.

Ein Bestandteil von SYNERGIE ist eine Wissens- und Informationsdatenbank (Ontologie), welche neben Informationen von Anlagenkomponenten (z.B. Pumpen und Gebläse/Verdichter und deren Kennlinien; Kennwerte Blockheizkraftwerk zur Erzeugung von elektrischer Energie und Wärme aus Biogas) auch Informationen zu ablaufenden Prozessen (z.B. optimale Bedingungen für die Produktion von Bio- bzw. Faulgas wie Temperatur, pH-Werte im Faulbehälter) und Energiekosten (z.B. Tarifinformationen des entsprechenden Energieversorgungsunternehmens) zur Verfügung stellt.

Speziell angepasste Schnittstellen ermöglichen den Datenaustausch zwischen dem SYNERGIE-System und dem Prozessleitsystem als auch der Modellierungs- und Simulationssoftware. Ziel ist die Umsetzung einer möglichst freien Kombinierbarkeit der Systeme untereinander.

Zur Darstellung der Informationen und Interaktion werden skalierbare Visualisierungs- und Interaktionstechniken verwendet. In diesem Zusammenhang werden moderne Multitouch-Techniken untersucht. Diese bieten eine schnelle und intuitive Steuerung und Analyse unter Verzicht auf die übliche Kombination aus Tastatur und Maus. Diese Aufgabenstellung bedingt die Erforschung neuer User-Interface-Konzepte, die losgelöst von alten Designs und simplen 1:1-Transfers üblicher Mausinteraktionen eine optimale Multitouch-Unterstützung bieten.

Partners

  • ifak system GmbH
  • Technische Universität Kaiserslautern – Fachgebiet Siedlungswasserwirtschaft
Virtual Try-On

Interaktiver Individual-Bekleidungskatalog

Interaktiver Individual-Bekleidungskatalog

Ziel des Virtual Try-On Teilprojektes Interaktiver Individual-Bekleidungskatalog ist die Schaffung der technologischen Grundlagen für eine synergetische Verbindung des innovativen Angebots kundenindividueller Bekleidungsstücke (Maßkonfektion) mit dem E- Commerce unter Einsatz von VR-Methoden und die Umsetzung dieser Techniken in die Praxis anhand eines virtuellen, kundenindividuellen Internet-Katalogs.

Die Nutzung dieses neuartigen Web-basierten Systems erfolgt nach der einmaligen Erfassung der kundenspezifischen Daten (z.B. Körpermaße) im Wesentlichen in zwei Schritten. Zunächst kombiniert der Kunde aus dem Angebot einzelne Kleidungsstücke (Modelltyp, Farbe und Ausstattung) und erhält als sofortiges Feedback zweidimensionale, vorgegebene Ansichten von sich selbst in der ausgewählten Kleidung. Per Mausklick kann er anschließend in einen 3D Modus wechseln. Mittels spezieller Morphingmethoden wird hierzu vom System ein 3D Modell der bekleideten Figurine generiert, das interaktiv aus beliebiger Perspektive betrachtet kann. Um eine schnelle und interaktive Darstellung zu ermöglichen und dadurch die Kundenakzeptanz des Systems zu steigern, wird an dieser Stelle auf eine physikalisch basierte Simulation der Kleidung verzichtet.

  • Synergetische Verbindung des innovativen Angebots kundenindividueller Bekleidungsstücke mit dem E-Commerce unter Einsatz von VR-Methoden.
  • Umsetzung dieser Techniken in die Praxis anhand eines virtuellen, kundenindividuellen Internet-Katalogs.
  • Entwicklung intelligenter Morphingmethoden zur Kleidungsvisualisierung ohne Einsatz physikalisch basierter Simulation.
You in 3D

You in 3D

Real-time Motion capture of multiple persons in community videos

Tracking multiple persons in 3D with high accuracy and temporal stability in real-time with monocular RGB camera is a challenging task which has a lot of practical applications like 3D human character animation, motion analysis in sports, modeling human body movements and many others. The optical human tracking methods often require usage of multi-view video recordings or depth cameras. Systems which work with monocular RGB cameras are mostly not in real-time, track single person and require additional data like initial human pose to be given. All this implies a lot of practical limitations and is one of the major reasons why optical motion capture systems have not yet seen more widespread use in commercial products. The DFKI research department Augmented Vision presents a novel fully automatic multi-person motion tracking system. The presented system works in real-time with monocular RGB video and tracks multiple people in 3D. It does not require any manual work or a specific human pose to start the tracking process. The system automatically estimates a personalized 3D skeleton and an initial 3D location of each person. The system is tested for tracking multiple persons in outdoor scenes, community videos and low quality videos captured with mobile-phone cameras.

You in 3D
You in 3D

Contact

Onorina Kovalenko

Be-greifen

Be-greifen

Comprehensible, interactive experiments: practice and theory in the MINT study

© S. Siegesmund

Be-greifenThe project is funded by the Federal Ministry of Education and Research (BMBF). Combine tangible, manipulatable objects (“tangibles”) with advanced technologies (“Augmented Reality”) to develop new, intuitive user interfaces. Through interactive experiments, it will be possible to actively support the learning process during the MINT study and to provide the learner with more theoretical information about physics.

In the project interfaces of Smartphones, Smartwatches or Smartglasses are used. For example, a data gadget that allows you to view content through a combination of subtle head movements, eyebrows, and voice commands, and view them on a display attached above the eye. Through this casual information processing, the students are not distracted in the execution of the experiment and can access the objects and manipulate them.

A research project developed as a preliminary study demonstrates the developments. For this purpose, scientists at the DFKI and at the Technical University Kaiserslautern have developed an app that supports students and students in the determination of the relationship between the fill level of a glass and the height of the sound. The gPhysics application captures the amount of water, measures the sound frequency and transfers the results into a diagram. The app can be operated only by gestures of the head and without manual interaction. In gPhysics, the water quantity is recorded with a camera and the value determined is corrected by means of head gestures or voice commands, if required. The microphone of the Google Glass measures the sound frequency. Both information is displayed in a graph that is continuously updated on the display of Google Glass. In this way, the learners can follow the frequency curve in relation to the water level directly when filling the glass. Since the generation of the curve is comparatively fast, the learners have the opportunity to test different hypotheses directly during the interaction process by varying various parameters of the experiment.

In the project, further experiments on the physical basis of mechanics and thermodynamics are constructed. In addition, the consortium develops technologies that enable learners to discuss video and sensor recordings as well as analyze their experiments in a cloud and to exchange ideas with fellow students or to compare results.

Partners

The DFKI is a co-ordinator of five other partners in research and practice: the Technical University of Kaiserslautern, studio klv GmbH & Co. KG Berlin, University of Stuttgart, Con Partners GmbH from Bremen and Embedded Systems Academy GmbH from Barsinghausen.

Funding programm: German BMBF

  • Begin: 01.07.2016
  • End: 30.06.2019

Contact

Dr. Jason Raphael Rambach

Marmorbild

Marmorbild

Marmorbild

© S. Siegesmund

The virgin stone marble has been used as preferred material for representative buildings and sculptures. Yet, due to its chemical composition and its porosity marble is prone to natural deterioration in outdoor environments, with an accelerating rate since the beginning of industrialization, mainly due to increasing pollution. A basic requirement for a successful restoration and conservation is a regularly repeated assessment of the current object condition and knowledge about prior restoration actions. Ideally the assessment is non-destructive. This requirement is fulfilled for both the optical digitization of objects shape and appearance, and the ultrasound examination used to acquire properties with respect to material quality.

Goal of the joint research project Marmorbild of the University Kaiserslautern, the Fraunhofer Institute (IBMT), and the Georg-August-University Göttingen is the validation of modern ultrasound technologies and digital reconstruction methods with respect to non-destructive testing of facades, constructions and sculptures built from marble. The proof of concept has been provided with prior research.

The planned portable assessment system holds a high potential for innovation. In the future, more objects can be examined cost-effectively in short time periods. Damage can be identified at an early stage allowing for a target-oriented investment of efforts and financial resources.

Dresdner Knabe

Partners

Funding by: BMBF

  • Funding programm: VIP+
  • Grant agreement no.: 03VP00293
  • Begin: 01.10.2016
  • End: 30.09.2019

Contact

Dr. Gerd Reis