Search
Publication Authors
Dr. Muhammad Zeshan Afzal

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Bertram Taetz

Sk Aziz Ali

Mhd Rashed Al Koutayni
Murad Almadani
Alaa Alshubbak
Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Iuliia Brishtel
Hammad Butt

Mahdi Chamseddine
Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava
Leif Eric Goebel

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Hashmi

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik
Michael Lorenz
Markus Miezal

Mina Ameli

Nareg Minaskan Karabid
Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Qinzhuan Qian

Engr. Kumail Raza

Dr. Nadia Robertini
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer
Pascal Schneider

René Schuster

Mohamed Selim
Lukas Stefan Staecker

Dennis Stumpf

Yongzhi Su

Xiaoying Tan
Yaxu Xie

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
DFKI Cabin Simulator: A Test Platform for Visual In-Cabin Monitoring Functions
DFKI Cabin Simulator: A Test Platform for Visual In-Cabin Monitoring Functions
Hartmut Feld, Bruno Mirbach, Jigyasa Singh Katrolia, Mohamed Selim, Oliver Wasenmüller, Didier Stricker
Commercial Vehicle Technology 2020 - Proceedings of the 6th Commercial Vehicle Technology Symposium - CVT 2020. Commercial Vehicle Technology Symposium (CVT) 6th International Commercial Vehicle Technology Symposium Kaiserslautern Kaiserlautern Germany Springer 2020 .
- Abstract:
- We present a test platform for visual in-cabin scene analysis and occupant monitoring functions. The test platform is based on a driving simulator developed at the DFKI, consisting of a realistic in-cabin mock-up and a wide-angle projection system for a realistic driving experience. The platform has been equipped with a wide-angle 2D/3D camera system monitoring the entire interior of the vehicle mock-up of the simulator. It is also supplemented with a ground truth reference sensor system that allows to track and record the occupant's body movements synchronously with the 2D and 3D video streams of the camera. Thus, the resulting test platform will serve as a basis to validate numerous in-cabin monitoring functions, which are important for the realization of novel human-vehicle interfaces, advanced driver assistant systems, and automated driving. Among the considered functions are occupant presence detection, size and 3D-pose estimation and driver intention recognition. In addition, our platform will be the basis for the creation of large-scale in-cabin benchmark datasets.