News Archive
  • December 2024
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023

March 2021

Paper accepted at ICRA 2021

We are delighted to announce that our paper PlaneSegNet: Fast and Robust Plane Estimation Using a Single-stage Instance Segmentation CNN has been accepted for publication at the ICRA 2021 IEEE International Conference on Robotics and Automation which will take place from May 30 to June 5, 2021 at Xi’an, China.

Abstract: Instance segmentation of planar regions in indoor scenes benefits  visual  SLAM  and  other  applications  such  as augmented reality (AR) where scene understanding is required. Existing  methods  built  upon  two-stage  frameworks  show  satisfactory  accuracy  but  are  limited  by  low  frame  rates.  In this  work,  we  propose  a  real-time  deep  neural  architecture that  estimates  piece-wise  planar  regions  from  a  single  RGB image. Our model employs a variant of a fast single-stage CNN architecture to segment plane instances.  Considering  the  particularity of the target detected, we propose Fast Feature Non-maximum  Suppression  (FF-NMS)  to  reduce  the  suppression errors  resulted  from  overlapping  bounding  boxes  of  planes. We  also  utilize  a  Residual  Feature  Augmentation  module  in the  Feature  Pyramid  Network  (FPN)  .  Our  method  achieves significantly  higher  frame-rates  and  comparable  segmentation accuracy  against  two-stage  methods.  We automatically label over 70,000 images as ground truth from the Stanford 2D-3D-Semantics dataset. Moreover, we incorporate our method with a state-of-the-art planar SLAM and validate  its  benefits.

Authors: Yaxu Xie, Jason Raphael Rambach, Fangwen Shu, Didier Stricker

Paper: https://av.dfki.de/publications/planesegnet-fast-and-robust-plane-estimation-using-a-single-stage-instance-segmentation-cnn/

Contact: Yaxu.Xie@dfki.de, Jason.Rambach@dfki.de

Two articles published at IEEE Access journal

We are happy to announce that two of our papers have been accepted and published in the IEEE Access journal. IEEE Access is an award-winning, multidisciplinary, all-electronic archival journal, continuously presenting the results of original research or development across all of IEEE’s fields of interest. The articles are published with open access to all readers. The research is part of the BIONIC project and was funded by the European Commission under the Horizon 2020 Programme Grant Agreement n. 826304.

“Simultaneous End User Calibration of Multiple Magnetic Inertial Measurement Units With Associated Uncertainty”
Published in: IEEE Access (Volume: 9)
Page(s): 26468 – 26483
Date of Publication: 05 February 2021
Electronic ISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3057579

“Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction Using Sparse Body Worn Magnetic Inertial Measurement Units”
Published in: IEEE Access (Volume: 9)
Page(s): 36657 – 36673
Date of Publication: 26 February 2021
Electronic ISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3062545

Presentation on Machine Learning and Computer Vision by Dr. Jason Rambach

On March 4th, 2021, Dr. Jason Rambach gave a talk on Machine Learning and Computer Vision at the GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit) workshop on Machine Learning and Computer Vision for Earth Observation organized by the DFKI MLT department. In the talk, the foundations of Computer Vision, Machine Learning and Deep Learning as well as current Research and Implementation challenges were presented.

Presentation by our senior researcher Dr. Jason Rambach
Agenda of the GIZ workshop on Machine Learning and Computer Vision for Earth Observation