Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Bertram Taetz
Dr. Muhammad Zeshan Afzal

Sk Aziz Ali

Mhd Rashed Al Koutayni
Murad Almadani
Alaa Alshubbak
Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine
Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava
Leif Eric Goebel

Tewodros Amberbir Habtegebrial
Simon Häring
Khurram Hashmi

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik
Michael Lorenz
Markus Miezal

Mina Ameli

Nareg Minaskan Karabid
Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Qinzhuan Qian

Engr. Kumail Raza
Dr. Nadia Robertini
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer
Pascal Schneider

René Schuster

Mohamed Selim
Lukas Stefan Staecker

Dennis Stumpf

Yongzhi Su

Xiaoying Tan
Yaxu Xie

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
LRPD: Long Range 3D Pedestrian Detection Leveraging Specific Strengths of LiDAR and RGB
LRPD: Long Range 3D Pedestrian Detection Leveraging Specific Strengths of LiDAR and RGB
David Michael Fürst, Oliver Wasenmüller, Didier Stricker
IEEE International Conference on Intelligent Transportation Systems (ITSC). IEEE Intelligent Transportation Systems Conference (IEEE ITSC-2020) September 20-23 Virtual Conference Greece IEEE 2020 .
- Abstract:
- While short range 3D pedestrian detection is sufficient for emergency breaking, long range detections are required for smooth breaking and gaining trust in autonomous vehicles. The current state-of-the-art on the KITTI benchmark performs suboptimal in detecting the position of pedestrians at long range. Thus, we propose an approach specifically targeting long range 3D pedestrian detection (LRPD), leveraging the density of RGB and the precision of LiDAR. Therefore, for proposals, RGB instance segmentation and LiDAR point based proposal generation are combined, followed by a second stage using both sensor modalities symmetrically. This leads to a significant improvement in mAP on long range compared to the current state-of-the art. The evaluation of our LRPD approach was done on the pedestrians from the KITTI benchmark.