Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Murad Almadani
Alaa Alshubbak

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Iuliia Brishtel
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik

Michael Lorenz

Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. René Schuster

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose Estimation
Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose Estimation
Jason Raphael Rambach, Aditya Tewari, Alain Pagani, Didier Stricker
IEEE International Symposium on Mixed and Augmented Reality (ISMAR-2016), September 19-23, Merida, Mexico
- Abstract:
- Camera pose estimation is the cornerstone of Augmented Reality applications. Pose tracking based on camera images exclusively has been shown to be sensitive to motion blur, occlusions, and illumination changes. Thus, a lot of work has been conducted over the last years on visual-inertial pose tracking using acceleration and angular velocity measurements from inertial sensors in order to improve the visual tracking. Most proposed systems use statistical filtering techniques to approach the sensor fusion problem, that require complex system modelling and calibrations in order to perform adequately. In this work we present a novel approach to sensor fusion using a deep learning method to learn the relation between camera poses and inertial sensor measurements. A long short-term memory model (LSTM) is trained to provide an estimate of the current pose based on previous poses and inertial measurements. This estimate is then appropriately combined with the output of a visual tracking system using a linear Kalman Filter to provide a robust final pose estimate. Our experimental results confirm the applicability and tracking performance improvement gained from the proposed sensor fusion system.
- Keywords:
- Sensor Fusion, tracking, deep learning