Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik

Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Muhammad Asad Ali

Jilliam Maria Diaz Barros

Ramy Battrawy
Katharina Bendig
Hammad Butt

Mahdi Chamseddine
Chun-Peng Chang

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi

Dr. Anna Katharina Hebborn

Hamoun Heidarshenas
Henri Hoyez

Alireza Javanmardi
M.Sc. Sai Srinivas Jeevanandam

Jigyasa Singh Katrolia

Matin Keshmiri

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Shashank Mishra

Pramod Murthy

Mathias Musahl
Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav

Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan

Shaoxiang Wang
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Inertial Motion Capture Using Adaptive Sensor Fusion and Joint Angle Drift Correction
Inertial Motion Capture Using Adaptive Sensor Fusion and Joint Angle Drift Correction
Hammad Tanveer Butt, Manthan Pancholi, Mathias Musahl, Pramod Narasimha Murthy, Maria Alejandra Sanchez Marin, Didier Stricker
22nd International Conference on Information Fusion (Fusion-2019), IEEE. International Conference on Information Fusion (FUSION-2019) July 2-5 Ottawa Ontario Canada IEEE 2019 .
- Abstract:
- The ambulatory motion capture and gait analysis using wearable MEMS based magnetic-inertial measurement units (MIMUs) is challenging despite multi-sensor fusion and effective anatomical (sensor-to-segment) calibration. The MEMS based sensors show degraded performance when run for long time, especially indoors. This is due to the fact that assumption of no acceleration except gravity and homogenous magnetic field no longer holds, when the motion is being performed. The rate gyro is used to complement the accelerometer/ magnetometer for orientation estimation, but integration of its residual biases as well as noise eventually causes the sensor fusion estimates to drift. The errors in heading angle or yaw are particular significant due to persistent nature of magnetic inhomogeneity in the environment. This ultimately results in inaccurate and drifting joint angle estimates between body segments that would require some means of correction. In present work, we propose a new adaptive covariance based EKF for sensor fusion which makes it effectively robust to both dynamic body accelerations as well as inhomogeneous magnetic field. The adaptive covariance method penalizes the bad accelerometer and magnetometer measurements and intelligently updates the gyro biases online using only undisturbed readings of accelerometer/magnetometer. Our sensor fusion algorithm provides accurate orientation estimates for each MIMU node over time. In order to account for any residual drift of joint angles, we propose a novel correction term in our anatomical formulation that performs online correction of drift in individual joint angles and updates it as an orientation offset. This offset correction for joint angle is performed automatically when the limb or extended torso are in neutral quasi-static pose and this condition is judged using accelerometers. Overall our approach achieves precise orientation estimates in highly dynamic conditions and avoids drift or error accumulation due to inhomogeneous magnetic fields during inertial motion capture.