Search
Publication Authors
Dr. Muhammad Zeshan Afzal

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Bertram Taetz

Sk Aziz Ali

Mhd Rashed Al Koutayni
Murad Almadani
Alaa Alshubbak
Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Iuliia Brishtel
Hammad Butt

Mahdi Chamseddine
Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava
Leif Eric Goebel

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Hashmi

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik
Michael Lorenz
Markus Miezal

Mina Ameli

Nareg Minaskan Karabid
Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Qinzhuan Qian

Engr. Kumail Raza

Dr. Nadia Robertini
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer
Pascal Schneider

René Schuster

Mohamed Selim
Lukas Stefan Staecker

Dennis Stumpf

Yongzhi Su

Xiaoying Tan
Yaxu Xie

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Real-time Camera Pose Estimation using Correspondences with High Outlier Ratios – Solving the Perspective n-Point Problem using Prior Probability
Real-time Camera Pose Estimation using Correspondences with High Outlier Ratios – Solving the Perspective n-Point Problem using Prior Probability
Tobias Nöll, Alain Pagani, Didier Stricker
VISAPP 2010 - Proceedings of the Fifth International Conference on Computer Vision Theory and Applications, Angers, France, May 17-21, 2010 - Volume 1 International Conference on Computer Vision Theory and Applications (VISAPP-2010), located at VISIGRAPP 2010, May 17-21, Angers, France
- Abstract:
- We present PPnP, an algorithm capable of estimating a robust camera pose in real-time, even if being provided with large sets of correspondences containing high ratios of outliers. For these situations, standard pose estimation algorithms using RANSAC are often unable to provide a solution or at least not in the required time frame. PPnP is provided with a probability distribution function which describes all valid possible camera pose estimates. By checking the correspondences for being compatible with the prior probability, it can be decided effectively at a very early stage, which correspondences can be treated as outliers. This allows a considerably more effective selection of hypothetical inliers than in RANSAC. Although PPnP is based on a technique called BlindPnP which is not intended for real-time computing, a number of changes in PPnP allows to estimate a camera pose with the same high quality as BlindPnP while being considerably faster.