Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez
Alireza Javanmardi

Jigyasa Singh Katrolia

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Pose Tracking vs. Pose Estimation of AR Glasses with Convolutional, Recurrent, and Non-Local Neural Networks: A Comparison
Pose Tracking vs. Pose Estimation of AR Glasses with Convolutional, Recurrent, and Non-Local Neural Networks: A Comparison
Ahmet Firintepe, Sarfaraz Habib, Alain Pagani, Didier Stricker
Proceedings of. EuroXR International Conference (EuroXR-2021) November 24-26 Milan Italy MDPI 2021 .
- Abstract:
- In this paper, we analyze various outside-in approaches for pose tracking and pose estimation of AR glasses. We first provide two frame-by-frame pose estimation approaches. The first one is a VGGbased CNN, while the second method is the state-of-the-art, ResNetbased AR glasses pose estimation method named GlassPoseRN. We then introduce LSTMs in the mentioned approaches to achieve AR glasses pose tracking. We compare methods with and without non-local blocks, which are theoretically promising for Pose Tracking as they consider nonlocal neighbor features in one image and among multiple images. We further include separable convolutions in some networks for comparison, which focus on maintaining the individual channels and therefore the triple images. We train and evaluate seven different algorithms on the HMDPose dataset. We observe a significant boost on the dataset from pose estimation to tracking approaches. Non-local blocks do not improve our performance further. The introduction of separable convolutions in our recurrent networks results in the best performance with an estimation error of 0.81 degrees in orientation and 4.46 mm in position. We reduce the error compared to the state-of-the-art by 76%. Our results suggest a promising approach for more immersive AR content for AR glasses in the car context, as high a 6-DoF pose accuracy improves the superimposition of the real world with virtual elements.