Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez
Alireza Javanmardi

Jigyasa Singh Katrolia

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching
Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching
Kumail Raza, René Schuster, Didier Stricker
Computer Science in Cars Symposium. ACM Computer Science in Cars Symposium (CSCS-2021) November 30-30 Ingolstadt Germany ACM 2021 .
- Abstract:
- Despite the remarkable progress of deep learning in stereo matching, there exists a gap in accuracy between real-time models and slower state-of-the-art models which are suitable for practical applications. This paper presents an iterative multi-scale coarse-to-fine refinement (iCFR) framework to bridge this gap by allowing it to adopt any stereo matching network to make it fast, more efficient and scalable while keeping comparable accuracy. To reduce the computational cost of matching, we use multi-scale warped features to estimate disparity residuals and push the disparity search range in the cost volume to a minimum limit. Finally, we apply a refinement network to recover the loss of precision which is inherent in multi-scale approaches. We test our iCFR framework by adopting the matching networks from state-of-the art GANet and AANet. The result is 49× faster inference time compared to GANetdeep and 4× less memory consumption, with comparable error. Our best performing network, which we call FRSNet is scalable even up to an input resolution of 6K on a GTX 1080Ti, with inference time still below one second and comparable accuracy to AANet+. It out-performs all real-time stereo methods and achieves competitive accuracy on the KITTI benchmark.