Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Murad Almadani
Alaa Alshubbak

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Iuliia Brishtel
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik

Michael Lorenz

Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. René Schuster

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction Using Sparse Body Worn Magnetic Inertial Measurement Units
Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction Using Sparse Body Worn Magnetic Inertial Measurement Units
Hammad Tanveer Butt, Bertram Taetz, Mathias Musahl, Maria Alejandra Sanchez Marin, Pramod Murthy, Didier Stricker
IEEE Access (IEEE) 9 Seiten 36657-36673 IEEE 2/2021 .
- Abstract:
- We propose a deep learning based framework that learns data-driven temporal priors to perform 3D human pose estimation from six body worn Magnetic Inertial Measurement units sensors. Our work estimates 3D human pose with associated uncertainty from sparse body worn sensors. We derive and implement a 3D angle representation that eliminates yaw angle (or magnetometer dependence) and show that 3D human pose is still obtained from this reduced representation, but with enhanced uncertainty. We do not use kinematic acceleration as input and show that it improves the generalization to real sensor data from different subjects as well as accuracy. Our framework is based on Bi-directional recurrent autoencoder. A sliding window is used at inference time, instead of full sequence (offline mode). The major contribution of our research is that 3D human pose is predicted from sparse sensors with a well calibrated uncertainty which is correlated with ambiguity and actual errors. We have demonstrated our results on two real sensor datasets; DIP-IMU and Total capture and have come up with state-of-art accuracy. Our work confirms that the main limitation of sparse sensor based 3D human pose prediction is the lack of temporal priors. Therefore fine-tuning on a small synthetic training set of target domain, improves the accuracy.