Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Joint Global ICP for Improved Automatic Alignment of Full Turn Object Scans
Joint Global ICP for Improved Automatic Alignment of Full Turn Object Scans
Torben Fetzer, Gerd Reis, Didier Stricker
International Conference on Computer Analysis of Images and Patterns. International Conference on Computer Analysis of Images and Patterns (CAIP-2021) September 28-30 Online Springer LNCS 2021 .
- Abstract:
- Point cloud registration is an important task in computer vision, computer graphics, robotics, odometry and many other disciplines. The problem has been studied for a long time and many different approaches have been established. In the case of existing rough initializations, the ICP approach is still widely used as the state of the art. Often only the pairwise problem is treated. In case of many applications, especially in 3D reconstruction, closed rotations of sequences of partial reconstructions have to be registered. We show that there are considerable advantages if ICP iterations are performed jointly instead of the usual pairwise approach (Pulli’s approach). Without the need for increased computational effort, lower alignment errors are achieved, drift is avoided and calibration errors are uniformly distributed over all scans. The joint approach is further extended into a global version, which not only considers one-sided adjacent scans, but updates symmetrically in both directions. The result is an approach that leads to a much smoother and more stable convergence, which moreover enables a stable stopping criterion to be applied. This makes the procedure fully automatic and therefore superior to most other methods, that often tremble close to the optimum and have to be terminated manually. We present a complete procedure, which in addition addresses the issue of automatic outlier detection in order to solve