Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Iterative Color Equalization for Increased Applicability of Structured Light Reconstruction
Iterative Color Equalization for Increased Applicability of Structured Light Reconstruction
Torben Fetzer, Gerd Reis, Didier Stricker
. International Conference on Computer Vision Theory and Applications (VISAPP-2020) Valletta Malta SCITEPRESS 2020 .
- Abstract:
- The field of 3D reconstruction is one of the most important areas in computer vision. It is not only of theoretical importance, but is also increasingly used in practice, be it in reverse engineering, quality control or robotics. A distinction is made between active and passive methods, depending on whether they are based on active interactions with the object or not. Due to the accuracy and density of the reconstructions obtained, the structured light approach, whenever applicable, is often the method of choice for industrial applications. Nevertheless, it is an active approach which, depending on material properties or coloration, can lead to problems and fail in certain situations. In this paper, a method based on the standard structured light approach is presented that significantly reduces the influence of the color of a scanned object. It improves the results obtained by repeated application in terms of accuracy, robustness and general applicability. Especially in high-precision reconstruction of small structures or high-contrast colored and specular objects, the technique shows its greatest potential. The advanced method requires neither pre-calibrated cameras or projectors nor information about the equipment. It is easy to implement and can be applied to any existing scanning setup.