Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Innovative system for real-time ergonomic feedback in industrial manufacturing
Innovative system for real-time ergonomic feedback in industrial manufacturing
Nicolas Vignais, Markus Miezal, Gabriele Bleser, Katharina Mura, Dominic Gorecky, Frédéric Marin
Article
- Abstract:
- This work presents a system that permits a real-time ergonomic assessment of manual tasks in an industrial environment. First, a biomechanical model of the upper body has been developed by using inertial sensors placed at different locations on the upper body. Based on this model, a computerized RULA ergonomic assessment was implemented to permit a global risk assessment of musculoskeletal disorders in real-time. Furthermore, local scores were calculated per segment, e.g. the neck region, and gave information on the local risks for musculoskeletal disorders. Visual information was fed back to the user by using a see-through head mounted display. Additional visual highlighting and auditory warnings were provided when some predefined thresholds were exceeded. In a user study (N = 12 participants) a group with the RULA feedback was compared to a control group. Results demonstrate that the real-time ergonomic feedback significantly decreased the outcome of both globally as well as locally hazardous RULA values that are associated with increased risk for musculoskeletal disorders. Task execution time did not differ between groups. The real-time ergonomic tool introduced in this study has the potential to considerably reduce the risk of musculoskeletal disorders in industrial settings. Implications for ergonomics in manufacturing and user feedback modalities are further discussed.