Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Alireza Javanmardi

Jigyasa Singh Katrolia

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Image Quality-Aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild
Image Quality-Aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild
Mohamed Selim, Suraj Sundararajan, Alain Pagani, Didier Stricker
International Conference on Computer Vision Theory and Applications (VISAPP-18), 13th, January 27-29, Funchal, Madeira, Portugal
- Abstract:
- Gender recognition is an important task in the field of facial image analysis. Gender can be detected using different visual cues, for example gait, physical appearance, and most importantly, the face. Deep learning has been dominating many classification tasks in the past few years. Gender classification is a binary classification problem, usually addressed using the facial image. In this work, we present a deep and compact CNN (GenderCNN) to estimate the gender from a facial image. We also, tackle the illumination and blurriness that appear in still images and appear more in videos. We use Adaptive Gamma Correction (AGC) to enhance the contrast and thus, get more details from the facial image. We use AGC as a pre-processing step in gender classification in still images. In videos, we propose a pipeline that quantifies the blurriness of an image using a blurriness metric (EMBM), and feeds it to its corresponding GenderCNN that was trained on faces with similar blurriness. We evaluated our proposed methods on challenging, large, and publicly available datasets, CelebA, IMDB-WIKI still images datasets and on McGill, and Point and Shoot Challenging (PaSC) videos datasets. Experiments show that we outperform or in some cases match the state of the art methods.
- Keywords:
- Gender, Face, Deep Learning, Quality, In the Wild, CNN