Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Alireza Javanmardi

Jigyasa Singh Katrolia

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Fully Automatic Multi-person Human Motion Capture for VR Applications
Fully Automatic Multi-person Human Motion Capture for VR Applications
Ahmed Elhayek, Onorina Kovalenko, Pramod Murthy, Muhammad Jameel Nawaz Malik, Didier Stricker
EuroVR (EuroVR-2018), October 22-23, London, United Kingdom
- Abstract:
- Fully automatic tracking of articulated motion in real-time with monocular RGB camera is a challenging problem which is essential for many virtual reality (VR) applications. In this paper, we propose a novel temporally stable solution for this problem which can be directly employed in VR practical applications. Our algorithm automatically estimates the number of persons in the scene, generates their corresponding person specific 3D skeletons, and estimates their initial 3D locations. For every frame, it fits each 3D skeleton to the corresponding 2D body-parts locations which are estimated with one of the existing CNN-based 2D pose estimation methods. The 3D pose of every person is estimated by maximizing an objective function that combines a skeleton fitting term with motion and pose priors. Our algorithm detects persons who enter or leave the scene, and dynamically generates or deletes their 3D skeletons. This makes our algorithm the first monocular RGB method usable in real-time applications such as dynamically including multiple persons in a virtual environment using the camera of the VR-headset. We show that our algorithm is applicable for tracking multiple persons in outdoor scenes, community videos and low quality videos captured with mobile-phone cameras.
- Keywords:
- Human motion capture, Convolutional neural network, anthropometric data