Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Alireza Javanmardi

Jigyasa Singh Katrolia

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Deep Orientation-Guided Gender Recognition from Face Images
Deep Orientation-Guided Gender Recognition from Face Images
Mohamed Selim, Stephan Krauß, Tewodros Amberbir Habtegebrial, Alain Pagani, Didier Stricker
International Conference on Pattern Recognition Systems. International Conference on Pattern Recognition Systems (ICPRS-2022) June 7-10 Saint-Étienne France IEEE 2022 .
- Abstract:
- In the recent decade, gender recognition and face analysis has been one of the most researched issues in computer vision. Although several solutions have been provided to the problem of gender recognition from face images, nonetheless, it is regarded as a difficult issue. Deep learning has been proven to solve challenging problems. On the other hand, several existing works have proven their ability to accurately predict the head orientation angles. The remaining error in gender prediction models requires novel solutions to try to improve it further. In this work, we present a novel deep learning-based method to predict gender using both the face image and the head orientation angles. We show that the use of head orientation information consistently boosts the accuracy of gender prediction models. We achieve this by increasing the representational power of deep neural networks by introducing a head orientation adapter. It takes the head angles as input and outputs a vector that is used to recalibrate the deep learning neural networks. The proposed method was tested on a large-scale dataset called AutoPOSE, which has sub-millimeter-accurate head orientation angles. We show that using the head orientation adapter consistently boosts the gender prediction models’ accuracy, and reduces the error by 20%.