Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Bertram Taetz
Dr. Muhammad Zeshan Afzal

Sk Aziz Ali

Mhd Rashed Al Koutayni
Murad Almadani
Alaa Alshubbak
Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine
Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava
Leif Eric Goebel

Tewodros Amberbir Habtegebrial
Simon Häring
Khurram Hashmi

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik
Michael Lorenz
Markus Miezal

Mina Ameli

Nareg Minaskan Karabid
Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Qinzhuan Qian

Engr. Kumail Raza
Dr. Nadia Robertini
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer
Pascal Schneider

René Schuster

Mohamed Selim
Lukas Stefan Staecker

Dennis Stumpf

Yongzhi Su

Xiaoying Tan
Yaxu Xie

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Consolidating Segmentwise Non-Rigid Structure from Motion
Consolidating Segmentwise Non-Rigid Structure from Motion
Vladislav Golyanik, André Jonas, Didier Stricker
International Conference on Machine Vision Applications (MVA). IAPR Conference on Machine Vision Applications (MVA-2019) May 27-31 Tokyo Japan IAPR 2019 .
- Abstract:
- This paper introduces a new segmentwise technique which consolidates multiple principles for non-rigid structure from motion (NRSfM) into a single energy-based framework. The energy functional of our Consolidating Monocular Dynamic Reconstruction (CMDR) approach is optimised by non-linear least squares and includes terms allowing to define the deformation model and additional constraints simultaneously in the metric and trajectory spaces. The proposed method achieves high accuracy on several tested sequences while providing robustness and scalability due to the spatial scene segmentation and the new lifted spatial Laplacian term. CMDR is flexible and easy to implement, thanks to the unified optimisation framework. It allows for scenario-specific extensions and can be used for rapid prototyping of new NRSfM methods.