Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
AutoPOSE: Large-Scale Automotive Driver Head Pose and Gaze Dataset with Deep Head Pose Baseline
AutoPOSE: Large-Scale Automotive Driver Head Pose and Gaze Dataset with Deep Head Pose Baseline
Mohamed Selim, Ahmet Firintepe, Alain Pagani, Didier Stricker
International Conference on Computer Vision Theory and Applications (VISAPP). International Conference on Computer Vision Theory and Applications (VISAPP-2020) 15th February 27-29 Valletta Malta SCITEPRESS Digital Library 2020 .
- Abstract:
- In computer vision research, public datasets are crucial to objectively assess new algorithms. By the wide use of deep learning methods to solve computer vision problems, large-scale datasets are indispensable for proper network training. Various driver-centered analysis depend on accurate head pose and gaze estimation. In this paper, we present a new large-scale dataset, AutoPOSE. The dataset provides ∼ 1.1M IR images taken from the dashboard view, and ∼ 315K from Kinect v2 (RGB, IR, Depth) taken from center mirror view. AutoPOSE’s ground truth -head orientation and position-was acquired with a sub-millimeter accurate motion capturing system. Moreover, we present a head orientation estimation baseline with a state-of-the-art method on our AutoPOSE dataset. We provide the dataset as a downloadable package from a public website.