Khurram Azeem Hashmi
E-Mail: | khurram_azeem.hashmi@dfki.de |
---|---|
Position: | Researcher |
Phone: | +49 631 20575 3493 |
Khurram Azeem Hashmi received his bachelor’s degree in computer science from the National University of Computer and Emerging Sciences, Pakistan, in 2016, and the M.S. degree from the Technical University of Kaiserslautern. He is currently pursuing a PhD degree with the German Research Center for Artificial Intelligence (DFKI GmbH) and the Technical University of Kaiserslautern, under the supervision of Dr Didier Stricker. His research interests include deep learning for computer vision, specifically in object detection and activity recognition. Previously, he has worked in the field of document layout understanding and post-OCR error corrections. He is also interested in the area of pattern recognition and document analysis. He has publications in reputed scientific journals like MDPI Sensors and IEEE Access. He is also a reviewer for IEEE Access and MDPI.
UnSupDLA: Towards Unsupervised Document Layout Analysis
In: International Workshop on Document Analysis Systems. IAPR International Workshop on Document Analysis Systems (DAS-2024), August 29 - September 4, Springer, Athens, Greece, 8/2024.
Details
| Link 1
Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection
In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024. International Conference on Computer Vision and Pattern Recognition (CVPR-2024), June 17-21, Seattle, WA, USA, IEEE/CVF, USA, 6/2024.
Details
| Link 1
FeatEnHancer: Enhancing Hierarchical Features for Object Detection and Beyond Under Low-Light Vision
In: International Conference on Computer Vision. International Conference on Computer Vision (ICCV-2023), October 2-6, Paris, France, IEEE, 10/2023.
Details
| Link 1
| Link 2
Towards end-to-end semi-supervised table detection with deformable transformer
In: International Conference on Document Analysis and Recognition (ICDAR-2023). International Conference on Document Analysis and Recognition (ICDAR-2023), Pages 51-76, Springer Nature Switzerland, San Jose, USA, 8/2023.
Details
| Link 1
Rethinking Learnable Proposals for Graphical Object Detection in Scanned Document Images
Applied Sciences (MDPI) 12 20 Seiten 1-22 MDPI Switzerland 10/2022 .
Details
| Link 1
| Link 2
Attention-Guided Disentangled Feature Aggregation for Video Object Detection
Sensors - Open Access Journal (Sensors) 22 21 Seiten 1-17 MDPI Switzerland 11/2022 .
Details
| Link 1
| Link 2
Spatio-Temporal Learnable Proposals for End-to-End Video Object Detection
British Machine Vision Conference. British Machine Vision Conference (BMVC-2022) 33rd British Machine Vision Conference British Machine Vision Association England 11/2022 .
Details
| Link 1
| Link 2
BoxMask: Revisiting Bounding Box Supervision for Video Object Detection
In: Winter Conference on Applications of Computer Vision 2023. IEEE Winter Conference on Applications of Computer Vision (WACV-2023), January 3-8, Waikoloa, HI, USA, CVF, 2023.
Details
| Link 1
| Link 2
Continual Learning for Table Detection in Document Images
Jan Egger (Hrsg.). Applied Sciences (MDPI) 12 18 Seiten 01-16 MDPI Switzerland 9/2022 .
Details
| Link 1
Mask-Aware Semi-Supervised Object Detection in Floor Plans
Applied Sciences (Hrsg.). Applied Sciences (MDPI) 12 9 Seiten 1-18 MDPI Switzerland 9/2022 .
Details
| Link 1
Investigating Attention Mechanism for Page Object Detection in Document Images
Applied Sciences (MDPI) 12 15 Seiten 3390-3408 MDPI Switzerland 7/2022 .
Details
| Link 1
| Link 2
Toward Semi-Supervised Graphical Object Detection in Document Images
Future Internet (MDPI) 14 6 Seiten 176-198 MDPI Switzerland 6/2022 .
Details
| Link 1
| Link 2
Exploiting Concepts of Instance Segmentation to Boost Detection in Challenging Environments
Sensors - Open Access Journal (Sensors) 22 Seiten 3703-3722 MDPI Switzerland 5/2022 .
Details
| Link 1
CasTabDetectoRS: Cascade Network for Table Detection in Document Images with Recursive Feature Pyramid and Switchable Atrous Convolution
Journal of Imaging (MDPI J) 7 10 Seiten 214-237 MDPI 10/2021 .
Details
| Link 1
HybridTabNet: Towards Better Table Detection in Scanned Document Images
Antonio Fernández (Hrsg.). Applied Sciences (MDPI) 11 18 Seiten 8396-8418 MDPI Switzerland 9/2021 .
Details
| Link 1
Towards Robust Object detection in Floor Plan Images: A Data Augmentation Approach
Applied Sciences (MDPI) 11 23 Seiten 1-22 MDPI 11/2021 .
Details
| Link 1
Current Status and Performance Analysis of Table Recognition in Document Images With Deep Neural Networks
IEEE Access (IEEE) 9 Seiten 87663-87685 IEEE 6/2021 .
Details
| Link 1
A Survey of Graphical Page Object Detection with Deep Neural Networks
Applied Sciences (MDPI) 11 12 Seiten 1-21 MDPI Basel, Switzerland 6/2021 .
Details
| Link 1
Cascade Network with Deformable Composite Backbone for Formula Detection in Scanned Document Images
Applied Sciences (MDPI) 11 16 Seite 7610 MDPI Switzerland 8/2021 .
Details
| Link 1
Guided Table Structure Recognition Through Anchor Optimization
IEEE Access (IEEE) 9 Seiten 113521-113534 IEEE 8/2021 .
Details
| Link 1
Survey and Performance Analysis of Deep Learning Based Object Detection in Challenging Environments
Radu Danescu (Hrsg.). Sensors - Open Access Journal (Sensors) 21 15 Seiten 1-30 MDPI 2021 .
Details
| Link 1
| Link 2