Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Alireza Javanmardi

Jigyasa Singh Katrolia

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Current Status and Performance Analysis of Table Recognition in Document Images With Deep Neural Networks
Current Status and Performance Analysis of Table Recognition in Document Images With Deep Neural Networks
Khurram Azeem Hashmi, Marcus Liwicki, Didier Stricker, Muhammad Adnan Afzal, Muhammad Ahtsham Afzal, Muhammad Zeshan Afzal
IEEE Access (IEEE) 9 Seiten 87663-87685 IEEE 6/2021 .
- Abstract:
- The first phase of table recognition is to detect the tabular area in a document. Subsequently, the tabular structures are recognized in the second phase in order to extract information from the respective cells. Table detection and structural recognition are pivotal problems in the domain of table understanding. However, table analysis is a perplexing task due to the colossal amount of diversity and asymmetry in tables. Therefore, it is an active area of research in document image analysis. Recent advances in the computing capabilities of graphical processing units have enabled deep neural networks to outperform traditional state-of-the-art machine learning methods. Table understanding has substantially benefited from the recent breakthroughs in deep neural networks. However, there has not been a consolidated description of the deep learning methods for table detection and table structure recognition. This review paper provides a thorough analysis of the modern methodologies that utilize deep neural networks. Moreover, it presents a comprehensive understanding of the current state-of-the-art and related challenges of table understanding in document images. The leading datasets and their intricacies have been elaborated along with the quantitative results. Furthermore, a brief overview is given regarding the promising directions that can further improve table analysis in document images.