News Archive
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023

December 2022

Two new PhDs

On Thursday, October 27th, 2022, Mohamed Selim successfully defended his PhD thesis entitled “Deep Learning-based Head Orientation and Gender Estimation from Face Image” in front of the the PhD committee consisting of Prof. Dr. Didier Stricker (TU Kaiserslautern), Prof. Dr. Karsten Berns (TU Kaiserslautern), and Prof Dr. Stefan Deßloch (TU Kaiserslautern).

In the thesis, Mohamed Selim studied the problem of gender and head orientation estimation from face images. Machine-based perception can be of great benefit in extracting that underlying information in face images if the problem is properly modeled. In his thesis, novel solutions are provided to the problems of head orientation estimation and gender prediction. Moreover, the effect of facial appearance changes due to head orientation variation has been investigated on gender prediction accuracy. A novel orientation-guided feature maps recalibration method is presented, that significantly increased the accuracy of gender prediction.

Mohamed Selim received his bachelor and master’s degrees in Computer Science and Engineering from the German University in Cairo, Egypt. He joined the Augmented Vision department in October 2012, as a PhD candidate, and later in March 2018 as a researcher working on industrial and EU research projects. His research interests include computer vision, 3D reconstruction, and deep learning.

Mr. Selim after his successful PhD defense

A week later, on Friday, November 4th, 2022, MSc. Ing. Hammad Tanveer Butt also successfully defended his PhD thesis entitled “Improved Sensor Fusion and Deep Learning of 3D Human Pose From Sparse Magnetic Inertial Measurement Units” in front of the PhD committee consisting of Prof. Dr. Didier Stricker (TU Kaiserslautern and DFKI), Prof. Dr. Imran Shafi (National University of Sciences and Technology, Pakistan) and Prof. Dr. Jörg Dörr (TU Kaiserslautern and IESE Fraunhofer).

The goal of the thesis was to obtain a magnetometer robust 3D human body pose from sparse magnetic inertial motion sensors with uncertainty prediction employing Bayesian Deep learning. To this end, a systematic approach was adopted to address all the challenges of inertial motion capture in an end to end manner. First, simultaneous calibration of multiple magnetic inertial sensors was achieved with error mitigation and residual uncertainty learning. Then a magnetometer robust sensor fusion algorithm for 3D orientation was proposed. Adaptive anatomical error correction was used to reduce long term drift in the joint angles.

Also joint angle constraints were learned using a data driven approach while employing swing-twist formulation for 3D joint rotations. Finally, the thesis showed that Bayesian deep learning framework can be used to learn 3D human pose from sparse magnetic inertial sensors while also predicting the uncertainty of pose estimation which is well correlated with actual error and lack of information, particularly when the yaw angle derived from magnetometer is not used. The thesis led to two peer-reviewed contributions in IEEE Access Journal, as well as a best scientific paper award in IntelliSys-2019 Conference held at UK. The conference paper on swing-twist learning of joint constraints presented in Machine Vision Applications (MVA)-2019, Tokyo Japan was later invited by the reviewing committee amongst top-candidates to be published as a journal paper (extended version). A conference paper and a poster by the author were also accepted at FUSION-2019 Conference held at Ottawa, Canada.

MSc. Ing. Hammad Tanveer Butt received his Bachelors in Avionics (1999) and Master degree in Electrical Engineering (2013) from National University of Sciences and Technology (NUST) Pakistan, respectively. From 2016-2021, he worked at the Augmented Vision (AV) group DFKI as a researcher, while pursuing his PhD. His research interests include nano-electronics, MEMS sensors, deep learning/AI and quantum machine learning.

Start of the CORTEX² project

The kick-off meeting of the CORTEX² project has been held at DFKI in Kaiserslautern on September 20th, 2022.

Participants at the kick-off meeting in Kaiserslautern

The mission of CORTEX² “COoperative Real-Time EXperiences with EXtended reality” is to democratize access to the remote collaboration offered by next-generation XR experiences across a wide range of industries and SMEs.

CORTEX2 will provide:

  • Full support for AR experience as an extension of video conferencing systems when using heterogeneous service end devices through a novel Mediation Gateway platform.
  • Resource-efficient teleconferencing tools through innovative transmission methods and automatic summarization of shared long documents.
  • Easy-to-use and powerful XR experiences with instant 3D reconstruction of environments and objects, and simplified use of natural gestures in collaborative meetings.
  • Fusion of vision and audio for multichannel semantic interpretation and enhanced tools such as virtual conversational agents and automatic meeting summarization.
  • Full integration of internet of things (IoT) devices into XR experiences to optimize interaction with running systems and processes.
  • Optimal extension possibilities and broad adoption by delivering the core system with open APIs and launching open calls to enable further technical extensions, more comprehensive use cases, and deeper evaluation and assessment.

Partners of the project are:

  • DFKI – Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Germany
  • LINAGORA – France
  • ALE – Alcatel-Lucent Entreprise International France
  • ICOM – Intracom SA Telecom Solutions Greece
  • AUS – AUSTRALO Alpha Lab MTÜ Estonia
  • F6S – F6S Network Limited Ireland
  • KUL– Katholieke Universiteit Leuven Belgium
  • CEA – Commissariat à l’énergie atomique et aux énergies alternatives France
  • ACT – Actimage GmbH Germany
  • UJI – Universitat Jaume I De Castellon

In addition to the project activities, CORTEX² will invest a total of 4 million Euros in two open calls, which will be aimed at recruiting tech startups/SMEs to co-develop CORTEX2; engaging new use-cases from different domains to demonstrate CORTEX2 replication through specific integration paths; assessing and validating the social impact associated with XR technology adoption in internal and external use cases.

Contact: Dr. Alain Pagani (Coordinator)

HAIKU project takes off!!

The European HAIKU project is taking off! The kick-off meeting took place in Lisbon on September 7th, 2022.

The goal of HAIKU is to develop a human-centric AI by exploring interactive AI prototypes in a variety of aviation contexts. A key challenge HAIKU faces is to develop human-centric digital assistants that will fit the way humans work.

It is essential both for safe operations, and for society in general, that the people who currently keep aviation so safe can work with, train and supervise these AI systems, and that future autonomous AI systems make judgements and decisions that would be acceptable to humans. HAIKU will pave the way for human-centric-AI by developing new AI-based ‘Digital Assistants’, and associated Human-AI Teaming practices, guidance and assurance processes, via the exploration of interactive AI prototypes in a wide range of aviation contexts.

Therefore, HAIKU will:

  • Design and develop a set of AI assistants, demonstrated in the different use cases.
  • Develop a comprehensive Human Factors design guidance and methods capability (‘HF4AI’) on how to develop safe, effective and trustworthy Digital Assistants for Aviation, integrating and expanding on existing state-of-the-art guidance.
  • Conduct controlled experiments with high operational relevance – illustrating the tasks, roles, autonomy and team performance of the Digital Assistant in a range of normal and emergency scenarios.
  • Develop new safety and validation assurance methods for Digital Assistants, to facilitate early integration into aviation systems by aviation stakeholders and regulatory authorities.
  • Deliver guidance on socially acceptable AI in safety critical operations, and for maintaining aviation’s strong safety record.

DFKI participates with two departments: Augmented Vision and Cognitive Assistants

Contact: Dr. Alain Pagani, Narek Minaskan