Online Ergonomic Assessment in an Industrial Environment

{youtube}O_3yhNenyN8{/youtube}

Nowadays, ergonomic evaluation of manual workflows is mostly based on subjective assessment and is performed offline. This video demonstrates a system, which provides objective measures for global ergonomic evaluation and even permits real-time assessment and feedback. The system continuously estimates the worker’s motions based on a body sensor network and derives global biomechanical scores using the ergonomic tool Rapid Upper Limb Assessment (RULA). Based on this, the user receives visual and acoustic feedback in real-time through a head-mounted display. This permits the worker to modify his posture immediately in order to decrease the risk of musculosceletal disorders. Moreover, the ergonomic scores are documented for offline analysis. The system could be used for planning, optimizing or training new workflows. It has been developed within the European project COGNITO (www.ict-cognito.org) in close cooperation between signal processing, biomechanics and end user requirements experts. 

Contact: Gabriele.Bleser@dfki.de

Online Ergonomic Assessment in an Industrial Environment
Online Ergonomic Assessment in an Industrial Environment

Nowadays, ergonomic evaluation of manual workflows is mostly based on subjective assessment and is performed offline. This video demonstrates a system, which provides objective measures for global ergonomic evaluation and even permits real-time assessment and feedback. The system continuously estimates the worker’s motions based on a body sensor network and derives global biomechanical scores using the ergonomic tool Rapid Upper Limb Assessment (RULA). Based on this, the user receives visual and acoustic feedback in real-time through a head-mounted display. This permits the worker to modify his posture immediately in order to decrease the risk of musculosceletal disorders. Moreover, the ergonomic scores are documented for offline analysis. The system could be used for planning, optimizing or training new workflows. It has been developed within the European project COGNITO (www.ict-cognito.org) in close cooperation between signal processing, biomechanics and end user requirements experts.