Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Monika Miersch

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik

Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Muhammad Asad Ali

Jilliam Maria Diaz Barros

Ramy Battrawy
Katharina Bendig
Hammad Butt

Mahdi Chamseddine
Chun-Peng Chang
Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi

Dr. Anna Katharina Hebborn

Hamoun Heidarshenas
Henri Hoyez

Pragati Jaiswal

Alireza Javanmardi
M.Sc. Sai Srinivas Jeevanandam

Jigyasa Singh Katrolia

Matin Keshmiri

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Shashank Mishra

Pramod Murthy

Mathias Musahl
Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav

Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan

Shaoxiang Wang
Christian Witte

Yaxu Xie

Vemburaj Yadav

Yu Zhou

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Using Mutual Independence of Slow Features for Improved Information Extraction and Better Hand-Pose Classification
Using Mutual Independence of Slow Features for Improved Information Extraction and Better Hand-Pose Classification
Aditya Tewari, Bertram Taetz, Frédéric Grandidier, Didier Stricker
Article
- Abstract:
- We propose a Slow Feature Analysis (SFA) based classification of hand-poses and demonstrate that the property of mutual independence of the slow feature functions improves the classification performance. SFA extracts func- tions that describe trends in a time series data and is capable of isolating noise from information while conserving high-frequency components of the data which are consistently present over time or in the set of data points. SFA is a useful knowledge extraction method that can be modified to identify functions which are well suited for distin- guishing classes. We show that by using the orthogonality property of SFA our information about classes can be increased. This is demonstrated by classification results on the well known MNIST dataset for hand written digit detection. Furthermore, we use a hand-pose dataset with five possible classes to show the performance of SFA. It consistently achieves a detection rate of over 96% for each class. We compare the classification results on shape descrip- tive physical features, on the Principal Component Analysis (PCA) and the non-linear dimensionality reduction (NLDR) for manifold learning. We show that a simple variance based decision algorithm for SFA gives higher recognition rates than K-Nearest Neighbour (KNN), on physical features, PCA and non-linear low dimensional representation. Finally, we examine Convolutional Neural Networks (CNN) in relation with SFA.
- Keywords:
- Slow Feature Analysis, Hand-Pose Identification, Knowledge extraction, Feature Learning