Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Monika Miersch

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik

Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Muhammad Asad Ali

Jilliam Maria Diaz Barros

Ramy Battrawy
Katharina Bendig
Hammad Butt

Mahdi Chamseddine
Chun-Peng Chang
Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi

Dr. Anna Katharina Hebborn

Hamoun Heidarshenas
Henri Hoyez

Pragati Jaiswal

Alireza Javanmardi
M.Sc. Sai Srinivas Jeevanandam

Jigyasa Singh Katrolia

Matin Keshmiri

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Shashank Mishra

Pramod Murthy

Mathias Musahl
Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav

Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan

Shaoxiang Wang
Christian Witte

Yaxu Xie

Vemburaj Yadav

Yu Zhou

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Unsupervised Multi-Sensor Anomaly Localization with Explainable AI
Unsupervised Multi-Sensor Anomaly Localization with Explainable AI
Mina Ameli, Viktor Pfanschilling, Anar Amirli, Wolfgang Maaß, Kristian Kersting
IFIP Artificial Intelligence Applications and Innovations Proceedings of AIAI 2022. International Conference on Artificial Intelligence Applications and Innovations (AIAI-2022) June 17-20 Crete Greece 646 ISBN 978-3-031-08332-7 Springer 2022 .
- Abstract:
- Multivariate and Multi-sensor data acquisition for the purpose of device monitoring had a significant impact on recent research in Anomaly Detection. Despite the wide range of anomaly detection approaches, localization of detected anomalies in multivariate and Multi-sensor time-series data remains a challenge. Interpretation and anomaly attribution is critical and could improve the analysis and decision-making for many applications. With anomaly attribution, explanations can be leveraged to understand, on a per-anomaly basis, which sensors cause the root of anomaly and which features are the most important in causing an anomaly. To this end, we propose using saliency-based Explainable-AI approaches to localize the essential sensors responsible for anomalies in an unsupervised manner. While most Explainable AI methods are considered as interpreters of AI models, we show for the first time that Saliency Explainable AI can be utilized in Multi-sensor Anomaly localization applications. Our approach is demonstrated for localizing the detected anomalies in an unsupervised multi-sensor setup, and the experiments show promising results. We evaluate and compare different classes of saliency explainable AI approach on the Server Machine Data (SMD) Dataset and compared the results with the state-of-the-art OmniAnomaly Localization approach. The results of our empirical analysis demonstrate a promising performance