Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Pedestrian Intention Recognition and Path Prediction for Video-based Advanced Driver Assistance Systems
Pedestrian Intention Recognition and Path Prediction for Video-based Advanced Driver Assistance Systems
Shekhar Raheja
Masters Thesis
- Abstract:
- This work presents a novel approach for video-based advanced driver assistance systems to predict an approaching pedestrian's intention to cross the road or not and accordingly estimate the future path. The presented approach addresses the most frequent real world problem faced by drivers to correctly estimate if the approaching pedestrian would cross the road or not. The primary goal of this research is to reduce the road accident casualties by automatically bringing the vehicle to a halt upon seeing an approaching pedestrian in high risk zone in case the driver is unaware. Features consisting of motion information in 3D-space and head-pose orientation over time are fed into the system. The system performs intention prediction based on time-series analysis and probabilistic trajectory matching within a approximated particle filtering-like framework. The system further estimates the pedestrian's path one second ahead in the future and uses the information from intention recognition system to improve path prediction.
- Keywords:
- Pedestrian Intention Recognition, Pedestrian Path Prediction, Porbabilistic Trajectory Matching, Advanced Driver Assistance Systems (ADAS), Snippets, time Series, Head Pose, Binary Search Tree (BST), Stopping Probability