Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Monika Miersch

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik

Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Muhammad Asad Ali

Jilliam Maria Diaz Barros

Ramy Battrawy
Katharina Bendig
Hammad Butt

Mahdi Chamseddine
Chun-Peng Chang
Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi

Dr. Anna Katharina Hebborn

Hamoun Heidarshenas
Henri Hoyez

Pragati Jaiswal

Alireza Javanmardi
M.Sc. Sai Srinivas Jeevanandam

Jigyasa Singh Katrolia

Matin Keshmiri

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Shashank Mishra

Pramod Murthy

Mathias Musahl
Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav

Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan

Shaoxiang Wang
Christian Witte

Yaxu Xie

Vemburaj Yadav

Yu Zhou

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- ENNOS
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- VIZTA
- You in 3D
High-Quality Rendering of Quartic Spline Surfaces on the GPU
High-Quality Rendering of Quartic Spline Surfaces on the GPU
Gerd Reis, Frank Zeilfelder, Martin Hering-Bertram, Gerald E. Farin, Hans Hagen
Article
- Abstract:
- We present a novel GPU-based algorithm for high-quality rendering of bivariate spline surfaces. An essential difference to the known methods for rendering graph surfaces is that we use quartic smooth splines on triangulations rather than triangular meshes. Our rendering approach is direct since we do not use an intermediate tessellation but rather compute ray-surface intersections (by solving quartic equations numerically) as well as surface normals (by using Bernstein-Be' zier techniques) for Phong illumination on the GPU. Inaccurate shading and artifacts appearing for triangular tesselated surfaces are completely avoided. Level of detail is automatic since all computations are done on a per fragment basis.Wecompare three different (quasi-) interpolating schemes for uniformly sampled gridded data, which differ in the smoothness and the approximation properties of the splines. The results show that our hardware-based renderer leads to visualizations (including texturing, multiple light sources, environment mapping, and so forth) of highest quality.
High-Quality Rendering of Quartic Spline Surfaces on the GPU
High-Quality Rendering of Quartic Spline Surfaces on the GPU
Gerd Reis, Frank Zeilfelder, Martin Hering-Bertram, Gerald E. Farin, Hans Hagen
Article
- Abstract:
- We present a novel GPU-based algorithm for high-quality rendering of bivariate spline surfaces. An essential difference to the known methods for rendering graph surfaces is that we use quartic smooth splines on triangulations rather than triangular meshes. Our rendering approach is direct since we do not use an intermediate tessellation but rather compute ray-surface intersections (by solving quartic equations numerically) as well as surface normals (by using Bernstein-Be' zier techniques) for Phong illumination on the GPU. Inaccurate shading and artifacts appearing for triangular tesselated surfaces are completely avoided. Level of detail is automatic since all computations are done on a per fragment basis.Wecompare three different (quasi-) interpolating schemes for uniformly sampled gridded data, which differ in the smoothness and the approximation properties of the splines. The results show that our hardware-based renderer leads to visualizations (including texturing, multiple light sources, environment mapping, and so forth) of highest quality.