Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller
Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Murad Almadani
Alaa Alshubbak

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Iuliia Brishtel
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik

Michael Lorenz

Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

René Schuster

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Hardware Architecture of Bidirectional Long Short-Term Memory Neural Network for Optical Character Recognition
Hardware Architecture of Bidirectional Long Short-Term Memory Neural Network for Optical Character Recognition
Vladimir Rybalkin, Norbert Wehn, Didier Stricker, Mohammad Reza Yousefi
Design, Automation & Test in Europe (DATE-2017), March 27-31, Lausanne, Switzerland
- Abstract:
- Optical Character Recognition is conversion of printed or handwritten text images into machine-encoded text. It is a building block of many processes such as machine translation, text-to-speech conversion and text mining. Bidirectional Long Short-Term Memory Neural Networks have shown a superior performance in character recognition with respect to other types of neural networks. In this paper, to the best of our knowledge, we propose the first hardware architecture of Bidirectional Long Short-Term Memory Neural Network with Connectionist Temporal Classification for Optical Character Recognition. Based on the new architecture, we present an FPGA hardware accelerator that achieves 459 times higher throughput than state-of-the-art. Visual recognition is a typical task on mobile platforms that usually use two scenarios either the task runs locally on embedded processor or offloaded to a cloud to be run on high performance machine. We show that computationally intensive visual recognition task benefits from being migrated to our dedicated hardware accelerator and outperforms high-performance CPU in terms of runtime, while consuming less energy than low power systems with negligible loss of recognition accuracy.