Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller
Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Murad Almadani
Alaa Alshubbak

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Iuliia Brishtel
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik

Michael Lorenz

Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

René Schuster

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Efficient Representation of Captured Geometry and Reflectance
Efficient Representation of Captured Geometry and Reflectance
Tobias Nöll
PhD Thesis
- Abstract:
- Having a digital representation of physical objects is desirable whenever realistic images of these objects need to be synthesized. This is the case for a large variety of use-cases including cultural heritage preservation (conservation and digital exhibition), e-Commerce (advertisment) and the production of movies (special effects). A digital representation should be compact, yet powerful enough to accurately resemble every single aspect defining the appearance of the physical counterpart. This visual appearance is mainly determined by the overall shape of the object and the interactions of its surface materials with incident light. We refer to the first proberty as geometry and to latter as reflectance. The work presented in this thesis is driven by the recent technical development of acquisition devices which enable synchronous aquiisition of object geometry and reflectance properties. We propose a novel methodology for the processing of raw data aquired by such devices that yields a compact, digital object under arbitrary, user-defined viewing and lightning conditions. The particulary novel aspect of our work is that we set great value upon the robustness and practicability of the developted concepts. We explicitly assume input with characteristics that are usually present in real measured data, i.e. massive, irregulary sampled and outlier afficted raw data.