Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Monika Miersch

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik

Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov
Anmol Prasad

Muhammad Asad Ali

Jilliam Maria Diaz Barros

Ramy Battrawy
Katharina Bendig
Hammad Butt

Mahdi Chamseddine
Chun-Peng Chang
Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe

Sophie Folawiyo

David Michael Fürst
Anshu Garg

Christiano Couto Gava
Suresh Guttikonda

Tewodros Amberbir Habtegebrial

Simon Häring

Khurram Azeem Hashmi

Dr. Anna Katharina Hebborn

Hamoun Heidarshenas
Henri Hoyez

Pragati Jaiswal

Alireza Javanmardi

Sai Srinivas Jeevanandam

Jigyasa Singh Katrolia

Matin Keshmiri

Andreas Kölsch
Ganesh Shrinivas Koparde
Onorina Kovalenko

Stephan Krauß
Bastian Krayer
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Shashank Mishra

Pramod Murthy

Mathias Musahl
Peter Neigel

Manthan Pancholi

Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav

Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Dr. Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Pelle Thielmann
Dr. Mohit Vaishnav

Shaoxiang Wang
Christian Witte

Yaxu Xie

Vemburaj Yadav

Yu Zhou

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- @VISOR
- @VISOR-HH
- 4DUS
- ActivityPlus
- AlphaView
- AlterEgo
- Anna C-trus
- AR-Handbook
- ARinfuse
- ARVIDA
- AuRoRas
- AVES/DyMoSiHR
- AVILUS+
- Be-greifen
- BIONIC
- Body Analyzer
- CAPTURE
- Co2Team
- COGNITO
- CONTACT
- DAKARA
- DENSITY
- DYNAMICS
- EASY-IMP
- EMERGENT
- ENNOS
- EPOS
- Eyes Of Things
- GreifbAR
- HyperCOG
- HYSOCIATEA
- iACT
- IMCVO
- iMP
- Infinity
- IVHM
- IVMT
- KI-Absicherung
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Moveon
- NetVis
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- ProWiLAN
- ServiceFactory
- SIMILAR
- SINNODIUM
- STREET3D
- SUDPLAN
- SwarmTrack
- SYNERGIE
- TuBUs-Pro
- VES
- VIDETE
- VIDP
- Virtual Try-On
- VisIMon
- VISTRA
- VIZTA
- You in 3D
Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer
Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer
Rodrigo Suarez‑Ibarrola, Simon Hein, Gerd Reis, Christian Gratzke, Arkadiusz Miernik
World Journal of Urology (WJUR) 2018 Seiten 1-19 Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019 .
- Abstract:
- Purpose The purpose of the study was to provide a comprehensive review of recent machine learning (ML) and deep learning (DL) applications in urological practice. Numerous studies have reported their use in the medical care of various urological disorders; however, no critical analysis has been made to date. Methods A detailed search of original articles was performed using the PubMed MEDLINE database to identify recent English literature relevant to ML and DL applications in the fields of urolithiasis, renal cell carcinoma (RCC), bladder cancer (BCa), and prostate cancer (PCa). Results In total, 43 articles were included addressing these four subfields. The most common ML and DL application in urolithiasis is in the prediction of endourologic surgical outcomes. The main area of research involving ML and DL in RCC concerns the differentiation between benign and malignant small renal masses, Fuhrman nuclear grade prediction, and gene expression-based molecular signatures. BCa studies employ radiomics and texture feature analysis for the distinction between low- and high-grade tumors, address accurate image-based cytology, and use algorithms to predict treatment response, tumor recurrence, and patient survival. PCa studies aim at developing algorithms for Gleason score prediction, MRI computer-aided diagnosis, and surgical outcomes and biochemical recurrence prediction. Studies consistently found the superiority of these methods over traditional statistical methods. Conclusions The continuous incorporation of clinical data, further ML and DL algorithm retraining, and generalizability of models will augment the prediction accuracy and enhance individualized medicine.