Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Muhammad Zeshan Afzal

Dr. Gabriele Bleser

Dr. Muhammad Jameel Nawaz Malik
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Nadia Robertini

Dr. René Schuster

Dr. Bertram Taetz

Ahmed Aboukhadra

Sk Aziz Ali

Mhd Rashed Al Koutayni

Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine

Steve Dias da Cruz
Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst

Christiano Couto Gava

Tewodros Amberbir Habtegebrial
Simon Häring

Khurram Azeem Hashmi
Henri Hoyez

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Michael Lorenz

Dr. Markus Miezal

Mina Ameli

Nareg Minaskan Karabid

Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Mariia Podguzova

Praveen Nathan
Qinzhuan Qian
Rishav
Marcel Rogge
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer

Pascal Schneider

Mohamed Selim

Tahira Shehzadi
Lukas Stefan Staecker

Yongzhi Su

Xiaoying Tan
Christian Witte

Yaxu Xie

Vemburaj Yadav

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Publication Archive
New title
- ActivityPlus
- AlterEgo
- AR-Handbook
- ARVIDA
- Auroras
- AVILUSplus
- Be-greifen
- Body Analyzer
- CAPTURE
- COGNITO
- DAKARA
- Density
- DYNAMICS
- EASY-IMP
- Eyes Of Things
- iACT
- IMCVO
- IVMT
- LARA
- LiSA
- Marmorbild
- Micro-Dress
- Odysseus Studio
- On Eye
- OrcaM
- PAMAP
- PROWILAN
- ServiceFactory
- STREET3D
- SUDPLAN
- SwarmTrack
- TuBUs-Pro
- VIDETE
- VIDP
- VisIMon
- VISTRA
- You in 3D
Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer
Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer
Rodrigo Suarez‑Ibarrola, Simon Hein, Gerd Reis, Christian Gratzke, Arkadiusz Miernik
World Journal of Urology (WJUR) 2018 Seiten 1-19 Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019 .
- Abstract:
- Purpose The purpose of the study was to provide a comprehensive review of recent machine learning (ML) and deep learning (DL) applications in urological practice. Numerous studies have reported their use in the medical care of various urological disorders; however, no critical analysis has been made to date. Methods A detailed search of original articles was performed using the PubMed MEDLINE database to identify recent English literature relevant to ML and DL applications in the fields of urolithiasis, renal cell carcinoma (RCC), bladder cancer (BCa), and prostate cancer (PCa). Results In total, 43 articles were included addressing these four subfields. The most common ML and DL application in urolithiasis is in the prediction of endourologic surgical outcomes. The main area of research involving ML and DL in RCC concerns the differentiation between benign and malignant small renal masses, Fuhrman nuclear grade prediction, and gene expression-based molecular signatures. BCa studies employ radiomics and texture feature analysis for the distinction between low- and high-grade tumors, address accurate image-based cytology, and use algorithms to predict treatment response, tumor recurrence, and patient survival. PCa studies aim at developing algorithms for Gleason score prediction, MRI computer-aided diagnosis, and surgical outcomes and biochemical recurrence prediction. Studies consistently found the superiority of these methods over traditional statistical methods. Conclusions The continuous incorporation of clinical data, further ML and DL algorithm retraining, and generalizability of models will augment the prediction accuracy and enhance individualized medicine.