Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Bertram Taetz
Dr. Muhammad Zeshan Afzal

Sk Aziz Ali

Mhd Rashed Al Koutayni
Murad Almadani
Alaa Alshubbak
Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine
Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava
Leif Eric Goebel

Tewodros Amberbir Habtegebrial
Simon Häring
Khurram Hashmi

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik
Michael Lorenz
Markus Miezal

Mina Ameli

Nareg Minaskan Karabid
Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Qinzhuan Qian

Engr. Kumail Raza
Dr. Nadia Robertini
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer
Pascal Schneider

René Schuster

Mohamed Selim
Lukas Stefan Staecker

Dennis Stumpf

Yongzhi Su

Xiaoying Tan
Yaxu Xie

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
3D Shape Processing by Convolutional Denoising Autoencoders on Local Patches
3D Shape Processing by Convolutional Denoising Autoencoders on Local Patches
Kripasindhu Sarkar, Kiran Varanasi, Didier Stricker
IEEE Winter Conference on Applications of Computer Vision (WACV-18), March 12-15, Lake Tahoe, NV, USA
- Abstract:
- We propose a system for surface completion and inpainting of 3D shapes using denoising autoencoders with convolutional layers, learnt on local patches. Our method uses height map based local patches parameterized using 3D mesh quadrangulation of the low resolution input shape. This provides us sufficient amount of local 3D patch dataset to learn deep generative Convolutional Neural Networks (CNNs) for the task of repairing moderate sized holes. We design generative networks specifically suited for the 3D encoding following ideas from the recent progress in 2D inpainting, and show our results to be better than the previous methods of surface inpainting that use linear dictionary. We validate our method on both synthetic shapes and real world scans.
- Keywords:
- CNN, inpainting, shape processing, shape repair