AR Handbook – Installing RAM
ARManual - Installing RAM
Nils Petersen and Didier Stricker, ‘Learning Task Structure from Video Examples for Workflow Tracking and Authoring’, in Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR), 2012
AR Handbook – Installing RAM

{youtube}eRX9aqAPkB8{/youtube}

Nils Petersen and Didier Stricker, ‘Learning Task Structure from Video Examples for Workflow Tracking and Authoring’, in Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR), 2012

OrcaM Reconstruction Sequences
OrcaM Reconstruction Sequences
This video demonstrates first detail results of the OrcaM 3D reconstruction system by means of Wilhelm Lehmbruck’s sculpture “Female Torso”, bronze, 1918.
At the very beginning of the video the sculpture is depicted as wireframe model, to show the fairly low resolution of the basic geometry (generated from a point cloud of approximately 300 million points). This geometry comprises less than 20k triangles, hence it is suited for most tasks. Nevertheless lots of detail information is provided as the respective diffuse rendering demonstrates (00:12).

To provide more detail we apply a high resolution normal map (currently with 16M pixels resolution). The respective result is shown starting at 00:20. Note that illumination effects apply, so the rendering appears a bit darker. Starting at 00:30 the model is rendered using diffuse texture colour only, which is used as basic colour. Note that no illumination has been calculated.
The final reconstruction result can be found at the end of the video (00:40), where respective anisotropic material parameters have been applied. For a Orcam System Demonstration see http://youtu.be/zHEi55oJJOA

OrcaM Reconstruction Sequences

{youtube}h320lM5DYlY{/youtube}

This video demonstrates first detail results of the OrcaM 3D reconstruction system by means of Wilhelm Lehmbruck’s sculpture “Female Torso”, bronze, 1918.
At the very beginning of the video the sculpture is depicted as wireframe model, to show the fairly low resolution of the basic geometry (generated from a point cloud of approximately 300 million points). This geometry comprises less than 20k triangles, hence it is suited for most tasks. Nevertheless lots of detail information is provided as the respective diffuse rendering demonstrates (00:12).
To provide more detail we apply a high resolution normal map (currently with 16M pixels resolution). The respective result is shown starting at 00:20. Note that illumination effects apply, so the rendering appears a bit darker. Starting at 00:30 the model is rendered using diffuse texture colour only, which is used as basic colour. Note that no illumination has been calculated.
The final reconstruction result can be found at the end of the video (00:40), where respective anisotropic material parameters have been applied.

For a Orcam System Demonstration see http://youtu.be/zHEi55oJJOA

Orcam System Demonstration
OrcaM - System demonstration (EN)
This video demonstrates the OrcaM 3D reconstruction system, developed in the context of a project of the department Augmented Vision of DFKI (http://av.dfki.de)

In this video it is shown how the hardware is opened to insert an object to be reconstructed. Currently the maximum size of objects is limited to 80cm diameter and a weight of approximately 100kg.
After closing the sphere again the acquisition process is fully automatic, though tuneable to account for complicated object geometries. Please note that the acquisition process has been extremely condensed and only drafts some steps necessary to acquire the respective information for a single camera position. I.e. horizontal and vertical fringe projection, directed illumination with light(patches), rotation of the carrier, etc. After the acquisition process the reconstruction of the object is computed fully automatic. A rendered result of the vase can be found at the end of the video. Note first that the rendering has been performed using a real world high-resolution HDR environment, which is reflecting in the vase and which introduces a pretty high amount of blue sky colour to the rendering. Secondly note that the reconstructed vase is NOT symmetric, which is in perfect agreement with the original

For OrcaM Reconstruction Sequences (“Female Torso” Wilhelm Lembruck) see:
http://youtu.be/h320lM5DYlY

Orcam System Demonstration

{youtube}zHEi55oJJOA{/youtube}

This video demonstrates the OrcaM 3D reconstruction system, developed in the context of a project of the department Augmented Vision of DFKI (http://av.dfki.de)

In this video it is shown how the hardware is opened to insert an object to be reconstructed. Currently the maximum size of objects is limited to 80cm diameter and a weight of approximately 100kg. 
After closing the sphere again the acquisition process is fully automatic, though tuneable to account for complicated object geometries. Please note that the acquisition process has been extremely condensed and only drafts some steps necessary to acquire the respective information for a single camera position. I.e. horizontal and vertical fringe projection, directed illumination with light(patches), rotation of the carrier, etc. After the acquisition process the reconstruction of the object is computed fully automatic. A rendered result of the vase can be found at the end of the video. Note first that the rendering has been performed using a real world high-resolution HDR environment, which is reflecting in the vase and which introduces a pretty high amount of blue sky colour to the rendering. Secondly note that the reconstructed vase is NOT symmetric, which is in perfect agreement with the original

For OrcaM Reconstruction Sequences (“Female Torso” Wilhelm Lembruck) see:
http://youtu.be/h320lM5DYlY

Odysseus Studio
Odysseus Studio first release overview.

With Studio you can visualize your 3D scene as well as tweak your materials and effects.

Odysseus Studio

{youtube}eEa5mhed1AI{/youtube}

Odysseus Studio first release overview.

With Studio you can visualize your 3D scene as well as tweak your materials and effects.

Inertial Upper Body Tracking Under Magnetic Disturbances
Inertial Upper Body Tracking Under Magnetic Disturbances
Inertial Upper Body Tracking Under Magnetic Disturbances

{youtube}XoVPsmalTno{/youtube}