Search
Publication Authors

Prof. Dr. Didier Stricker

Dr. Alain Pagani

Dr. Gerd Reis

Eric Thil

Keonna Cunningham

Dr. Oliver Wasenmüller

Dr. Gabriele Bleser
Dr. Bruno Mirbach

Dr. Jason Raphael Rambach

Dr. Bertram Taetz
Dr. Muhammad Zeshan Afzal

Sk Aziz Ali

Mhd Rashed Al Koutayni
Murad Almadani
Alaa Alshubbak
Yuriy Anisimov

Jilliam Maria Diaz Barros

Ramy Battrawy
Hammad Butt

Mahdi Chamseddine
Steve Dias da Cruz

Fangwen Shu

Torben Fetzer

Ahmet Firintepe
Sophie Folawiyo

David Michael Fürst
Kamalveerkaur Garewal

Christiano Couto Gava
Leif Eric Goebel

Tewodros Amberbir Habtegebrial
Simon Häring
Khurram Hashmi

Jigyasa Singh Katrolia

Andreas Kölsch
Onorina Kovalenko

Stephan Krauß
Paul Lesur

Muhammad Jameel Nawaz Malik
Michael Lorenz
Markus Miezal

Mina Ameli

Nareg Minaskan Karabid
Mohammad Minouei

Pramod Murthy

Mathias Musahl

Peter Neigel

Manthan Pancholi
Qinzhuan Qian

Engr. Kumail Raza
Dr. Nadia Robertini
María Alejandra Sánchez Marín
Dr. Kripasindhu Sarkar

Alexander Schäfer
Pascal Schneider

René Schuster

Mohamed Selim
Lukas Stefan Staecker

Dennis Stumpf

Yongzhi Su

Xiaoying Tan
Yaxu Xie

Dr. Vladislav Golyanik

Dr. Aditya Tewari

André Luiz Brandão
Learning 3D Joint Constraints from Vision based Motion Capture Datasets
Learning 3D Joint Constraints from Vision based Motion Capture Datasets
(Hrsg.)
- Abstract:
- Pramod Murthy, Hammad T. Butt, Sandesh Hiremath, Alireza Khoshhal, Didier Stricker Published as Express Paper, Springer Open Journal - IPSJ Transactions on Computer Vision and Applications. IAPR Conference on Machine Vision Applications (MVA-2019) May 27-31 Tokyo Japan [Oral] . Realistic estimation and synthesis of articulated human motion must satisfy anatomical constraints on joint angles. A data-driven approach is used to learn human joint limits from 3D motion capture datasets. We represent joint constraints with a new formulation (s1; s2; ) using swing-twist representation in exponential maps form. Our parameterization is applied on Human3.6M dataset to create the lookup-map for each joint. These maps enable us to generate `synthetic' datasets in entire joint rotation space of a given joint. A set of neural network discriminators is then trained with synthetic datasets to learn valid/invalid joint rotations. The discriminators achieve accuracy of [94:4% - 99:4%] for dierent joints. We validate precision-accuracy trade-o of discriminators and qualitatively evaluate classied poses with an interactive tool. The learned discriminators can be used as `priors' for human pose estimation and motion synthesis. Paper DOI: https://ipsjcva.springeropen.com/articles/10.1186/s41074-019-0057-z