SUDPLAN

Sudplan

Project Manager: Prof. Dr. Didier Stricker
Funding by: EU

The SUDPLAN project aims at developing an easy-to-use web-based planning, prediction, decision support and training tool, for the use in an urban context, based on a what-if scenario execution environment, which will help to assure population’s health, comfort, safety and life quality as well as sustainability of investments in utilities and infrastructures within a changing climate.

Sustainable Urban Development Planner for Climate Change Adaptation

The latest sudplan3D prototype utilizing our 3-D visualization can be found here.

The SUDPLAN project aims at developing an easy-to-use web-based planning, prediction, decision support and training tool, for the use in an urban context, based on a what-if scenario execution environment, which will help to assure population’s health, comfort, safety and life quality as well as sustainability of investments in utilities and infrastructures within a changing climate.
This tool is based on an innovative and visionary capacity to link, in an ad-hoc fashion, existing environmental simulation models, information and sensor infrastructures, spatial data infrastructures and climatic scenario information in a service-oriented approach, as part of the Single Information Space in Europe for the Environment (SISE). It will provide end users with 3D modeling and simulation as well as cutting edge highly interactive 3D/4D visualization, including visualization on real 3D hardware.

The tool includes the SUDPLAN Scenario Management System and three so-called Common Services, which “downscale” regional climate change models using local knowledge, and which will be available for use in all of Europe. Both components will contribute to improved assessment of urban climate change impact.

Vital aspects of climate change are considered in 4 carefully selected urban pilot applications located in Austria, the Czech Republic, Germany and Sweden. They cover such diverse applications as: a) extreme rainfall episodes causing problems with uncontrollable, extremely localized runoff, and for drainage and sewage systems, b) hazardous air pollution and high ambient temperature episodes causing health risks, and c) social dynamics (movement of people) as function of climate change and quality of living.

DFKI’s role in this European project is the interactive 3D/4D visualization of simulation input and result data on standard 2D as well as on 3D hardware. Furthermore DFKI develops interaction methods for intuitive manipulation and analysis of the aforementioned data.

Project partners:
SMHI – Swedish Meteorological and Hydrological Institute, SE
AIT – Austrian Institute of Technology GmbH, AT
cismet GmbH, DE
CENIA – Czech Environmental Information Agency, CZ
Apertum IT AB, SE
Stockholm Uppsala Air Quality Management Association, SE
City of Wuppertal, DE
Technische Universität Graz, AT

See Sudplan3D Project Site for more information